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In complex environments, the space of possible plans is vast. Generating a good plan
therefore requires judicious selection of which parts of the plan space to mentally explore.
Drawing on past studies of human exploration, we propose that mental exploration might
invoke similar mechanisms. In particular, we test the hypothesis that mental exploration
during planning is uncertainty-driven, such that people will exhibit a tendency to explore
parts of the plan space that have high epistemic uncertainty. We developed a route-
planning task, displayed as a binary tree, where participants were instructed to collect as
many treats (rewards) as possible by traversing the tree. By separating the planning and
execution phases, we encouraged participants to externalize their planning process. We
manipulated uncertainty by varying the number of potential future states available from
each current state. Across two studies, the data suggest that people preferred to explore
options with more successor states after controlling for value differences, supporting the
uncertainty-driven planning hypothesis. We also found that uncertainty played a larger
role during the planning phase than during the execution phase, consistent with the
hypothesis that the uncertainty effect primarily reflects a property of human planning
algorithms rather than an intrinsic preference for uncertainty.
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Planning, the process of using aworldmodel to
inform behavior, is an important capacity for an
organism to flexibly direct their behavior toward
goals, especiallywhen achieving a goal requires a
sequence of many actions—that is, multistep
planning (Miller & Venditto, 2021). Finding the
optimal plan in a large environment is notoriously
intractable, due to the combinatorial explosion of
possible decision sequences. Yet planning is also
ubiquitous: From spending a day in a new city to
preparing a future career, planning underlies
many real-life sequential decision problems. For
this to be possible, the brain must use algorithms
that intelligently search the space of decision
sequences without brute-force enumeration.
For inspiration, we can look to planning al-

gorithms that have been implemented in ma-
chines (LaValle, 2006). The fundamental object
of study is the decision tree, where each node
corresponds to a state and each edge corresponds
to an action (Figure 1). The root node represents
the agent’s current state. Choosing an action in a
particular state moves the agent along the cor-
responding edge to a new state. Classical plan-
ning algorithms either exhaustively enumerate
the possible actions at a given level of the decision
tree before choosing one and moving to the next
level (breadth-first search) or exhaustively enu-
merate the possible actions along a single branch
of the decision tree before moving to the next
branch (depth-first search). Both approaches can
fail when the state space is very large or the
optimal plans are very long. More efficient al-
gorithms selectively search along particular paths
based on an evaluation function that ranks the
actions at each state (best-first search). The basic
challenge for these algorithms is to define a good
evaluation function that can be easily computed.
A good choice of evaluation function may be
problem-specific, hindering the generic applica-
tion of such algorithms.
An important insight into the design of efficient

planning algorithms came from a connection
with the exploration–exploitation dilemma in
reinforcement learning (Sutton & Barto, 2018).

An agent interacting with an environment
faces the problem of simultaneously optimizing
reward and gathering information. The agent
can choose to exploit its current action value
estimates, but this may yield suboptimal reward
if the estimates are poor. The agent can improve
the estimates by exploring the environment, but
this runs the risk of incurring an opportunity cost if
the explored states have low reward. Although
the optimal algorithm for balancing exploration
and exploitation is intractable, uncertainty-directed
reinforcement learning algorithms have been
highly successful (Auer, 2002; Ciosek et al.,
2019; Dayan & Sejnowski, 1996; Srinivas et al.,
2010). In particular, these algorithms add an
“uncertainty bonus” to the action values based on
the agent’s ignorance about the true value. The
Upper Confidence Bound algorithm (Auer, 2002),
for example, defines the uncertainty bonus based
on a confidence interval around the value estimate.
By taking actions that have high upper confidence
bounds, the agent focuses their exploration on
actions whose value could be much higher than
currently estimated.
It might seem that the exploration–exploitation

dilemma does not apply in the case of planning:
Exploration in reinforcement learning involves
taking actions in an unknown environment,
whereas planning involves thinking about actions
in a known environment. However, both problem
settings involve reducing uncertainty about state-
action values by traversing the state space (Hunt
et al., 2021). Another difference between rein-
forcement learning and planning is that there is no
opportunity for true exploitation while planning,
since the agent does not actually receive the re-
wards associated with simulated actions. Here,
the analogy is less precise. However, note that
the goal of planning is to find a high-value
sequence of actions. If an action already has high
estimated value, it is more likely to be part of
such a sequence. The agent can thus “exploit”
this knowledge to focus their search on more
promising actions—indeed, this is precisely the
idea behind best-first search.
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These arguments suggest that planning presents
a form of exploration–exploitation dilemma, in
which an agent must strike a balance between
refining promising plans (exploitation) and seek-
ing out new ones (exploration). This idea has been
implemented in many different ways (e.g.,
Bellman, 1956; Sanner et al., 2009; Sutton, 1990).
One notable example is upper confidence bounds
applied to trees (Kocsis & Szepesvári, 2006), the
core mechanism of modern Monte Carlo tree
search algorithms (Browne et al., 2012). In upper
confidence bounds applied to trees, the agent si-
mulates several action sequences (or “rollouts”),
applying a variant of Upper Confidence Bound
algorithm (Auer, 2002) to decide which action
to simulate at each step.
There is already considerable evidence that

people use uncertainty-directed algorithms for
reinforcement learning (Fan, Burke, et al., 2023;
Fan, Gershman, & Phelps, 2023; Frank et al.,
2009; Gershman, 2018a, 2019; Schulz et al.,
2020; Speekenbrink &Konstantinidis, 2015;Wu
et al., 2018, 2021) and that these algorithms also
appear to be used in real-world environments
such as food purchasing (Schulz et al., 2019).
However, this work almost exclusively focuses
on one-step decision making (“bandit” tasks), in
which one’s action only determines the imme-
diate reward. In contrast, the present study
focuses on multistep decision making, in which
one’s action additionally determines the next
state (and therefore future rewards). Performing

well on such problems generally requires con-
structing a plan before making the first choice.
Accordingly, one must explore the available
options within one’s own mind rather than in the
world. We hypothesize that people direct this
internal exploration using the same kind of
reinforcement learning strategies that direct their
external exploration. Here, we explore whether
people use uncertainty as a heuristic approxi-
mation to optimal exploration while planning.
In this article, we report two experiments de-

signed to study the hypothesis that people use a
similar uncertainty-directed algorithm for planning
in a multistep decision-making setting.1 The key
idea is to create situations where participants have
varying levels of epistemic uncertainty about dif-
ferent branchesof thedecision tree.Weaccomplish
this by varying the number of children nodes
(branching factor) at different nodes in the tree. All
elsebeing equal, therewill be greater uncertainty in
the values of nodes with more children because
these nodes lead to a greater number of possible
future rewards. The uncertainty about which of
those rewards will actually be attained as well as
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Figure 1
Illustration of a Decision Tree

Note. This example decision tree consists of five nodes and three layers. Each node reflects
a state and the root node (Node A) is the agent’s current state. Edges (e.g., A→ B) indicate
choosing an action in a specific state (Node A) and moving to a new state (Node B). The
node(s) that falls under another node is termed as the child node (e.g., D is B’s child), and the
current node is termed as the parent node (e.g., B is D’s parent). Child node’s child node is
termed as the indirect descendant (e.g., D is A’s indirect descendant). Nodes that do not have
a child node are termed leaf nodes (D and E in the example). Nodes that share the same
parent are sibling nodes (e.g., B and C are siblings). See the online article for the color
version of this figure.

1 Note that bandit problems also present a certain kind of
multistep problem, in that one’s current action provides
information that may inform one’s later actions. Formally,
bandits can be modeled as a sequential problem where the
states correspond to beliefs about the reward rate of each
bandit (Gittins, 1979). Here, however, we focus on problems
where the external environment has sequential structure (what
one typically means by “multistep decision making”).
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uncertainty in the rewards themselves will both
contribute tohigheruncertainty in thenode’svalue.
Experiment 1 was designed to test whether people
demonstrate a preference to visit the node with
more children during planning. Experiment 2 aims
at replicating Experiment 1’s findings over a more
diverse set of task structure and further examined
whether people would also prefer to approach the
node with more indirect descendants, which is a
more farsighted indicator of uncertainty.
One methodological challenge in studying the

dynamics of planning in real time is that planning
is a mental process that is not directly observable.
To address this, planning researchers often use
process-tracing methods that make aspects of the
planning process observable, for example, think
aloud (De Groot, 1965; Newell & Simon, 1972),
eye tracking (Callaway et al., 2024; Cristín et al.,
2022; Kadner et al., 2023; van Opheusden et al.,
2023; Zhu et al., 2022), and mouse tracking
(Callaway, van Opheusden, et al., 2022; Eluchans
et al., 2025). Here, we adopt a similar approach,
providing participants with an explicit interface to
perform rollouts before they commit to a plan.
Forcing participants to structure their planning in
this way carries two benefits. First, it prevents
participants from using more flexible strategies,
like best-first search, whose cognitive cost is
artificially reduced by presenting the full envi-
ronment in a visual display. Second, it allows us
to directly compare participant data with rollout-
based planning algorithms.

Method

The experiment design, sample size, exclusion
criteria, and primary data analysis plan for
Experiments 1 and 2were preregistered at https://
aspredicted.org/83Y_MN8 and https://aspredicte
d.org/YTG_4K2 (Fan et al., 2025b, 2025c). This
study was approved by the Harvard University
Committee on theUse ofHumanSubjects (IRB19-
0789) and conformed to American Psychological
Association ethical standards. Data and code to
regenerate results are publicly available at
https://osf.io/t2cmr (Fan et al., 2025a).

Participants

Participants were recruited via the Prolific
platform, and informed consentwas given prior to
testing. Participants were excluded if they did
not utilize the PLAN phase or used the PLAN

phase for one trajectory in >50% of all trials. We
also excluded participants who chose the more
rewarding option <60% in the EXECUTE phase
(see the Experiment Design section for more
information on different phases of the experi-
ment). The exclusion criteria were preregistered.
We recruited 95 participants in total (Experiment
1: N = 42; Experiment 2: N = 53), and the final
sample size is 39 for Experiment 1 (25 male, 14
female; age:M = 36.8, SD = 10.3, range 21–59)
and 45 for Experiment 2 (20male, 25 female; age:
M = 33.9, SD = 7.6, range 19–56).

Experiment Design

Trick-or-Treat Game

Ourgame is amodifiedversionof theMouselab-
MDPparadigm,which extends the approach of the
Mouselab paradigm to a general class of planning
tasks known asMarkov decision processes and has
been widely used for studying human planning
(Callaway et al., 2017; Callaway, Jain, et al., 2022;
He&Lieder, 2023; Jain et al., 2023).On each trial,
participants were presented with a route-planning
problem displayed as a binary tree (Figure 2). As
part of the cover story, they were told that each
node represents a house, and their goal was to
collect as many treats (reward) as possible by
visiting a series of interconnected houses (nodes).
See Appendix A for full instructions. Participants
moved between nodes using the arrow keys.
Participants are only allowed to move in the
direction specified by the arrows connecting the
houses (Figure 2), and each node can at maximum
be visited once in each route. Upon arriving at a
node, they received a prespecified reward, drawn
from a normal distribution, Nðμ = 0, σ2 = 2.25Þ.
Critically, the reward associated with each node
was consistent within a trial but was randomly
sampled on each new trial. Thus, participants could
learn about thevalueof apathon the current trial but
could not do any useful learning across trials.
Participants are also explicitly instructed that the
goodness of a route is independent of its location
anddirection toprevent themfrommaking spurious
generalization about the goodness of a specific path
across trials.
There were two phases in the game: PLAN and

EXECUTE. During the PLAN phase—referred
to as “ghost mode” in the instructions—
participants could not collect treats, but they
could simulate possible action sequences as if

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

A
ll
ri
gh
ts
,
in
cl
ud
in
g
fo
r
te
xt

an
d
da
ta

m
in
in
g,

A
I
tr
ai
ni
ng
,
an
d
si
m
ila
r
te
ch
no
lo
gi
es
,
ar
e
re
se
rv
ed
.

UNCERTAINTY-DRIVEN PLANNING 337

https://aspredicted.org/83Y_MN8
https://aspredicted.org/83Y_MN8
https://aspredicted.org/83Y_MN8
https://aspredicted.org/YTG_4K2
https://aspredicted.org/YTG_4K2
https://osf.io/t2cmr


they were actually executing them (i.e., perform
rollouts). Similar to the EXECUTE phase,
participants move between nodes in the PLAN
phase using arrow keys in the direction specified
by the arrows on the screen. Immediately before
the PLAN phase, the rewards at all nodes were
displayed for 500ms. This provides participants
with a rough idea of the reward function, al-
lowing them to direct their rollouts toward
higher rewards if they so desired. At each
moment during the PLAN phase, participants
could either move to an adjacent node and reveal
its reward (arrow keys), jump back to the starting
node (space), or end the PLAN phase (letter key
t). Switching between phases is one-directional:
participants cannot reinitiate PLAN mode after
deciding to end it. These, respectively, corre-
spond to continuing a rollout, cutting off a single
rollout early, and terminating the planning pro-
cess. Any reward revealed during the PLAN

phase remained visible until the next phase began.
The revealed reward is identical to the outcome
of the node during in the EXECUTE phase—
that is, participants are provided with the true
payoff and do not need to sample repeatedly to
form an estimate. The total reward of the current
rollout is displayed on the screen to assist
evaluating the goodness of the current path.
After 20 s, the PLAN phase was automatically
terminated (if the participant had not already
done so). During the EXECUTE phase, parti-
cipants committed to one route and received the
total reward associated with all the nodes they
visited. Participants were incentivized with a
monetary bonus and were told that the bonus is
proportional to the total number of treats they
have collected during the EXECUTE phase
throughout the experiment. They were also
explicitly instructed that the treats collected
during the PLAN phase do not count toward
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Figure 2
Task Schematic

(A) (B)

(C) (D)

Note. Panel A: Participants started in the PLAN phase, indicated by a transparent avatar. The treats
(rewards) were briefly flashed at the beginning of each trial (not shown here). Panel B: Participants used
arrow keys to traverse the tree. Reward along the same trajectory remained visible during the rollout.
Panel C: During the PLAN phase, participants can choose to restart from the root node for additional
rollouts. The previously revealed reward remained visible throughout the PLAN phase. Participants
had up to 20 s to carry out rollouts. They could also choose to terminate the PLAN phase earlier if they
were ready for the EXECUTE phase. Panel D: When entering EXECUTE phase, indicated by a solid
avatar, the rewards revealed during PLAN phase disappeared. Participants committed to one route and
received the accumulated reward on the specific route. See the online article for the color version of this
figure.
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the final monetary bonus. The treats-to-bonus
conversion scale is 0.01 and is capped at $1 for
Experiment 1 (M = 0.91, SD = 0.26; base
payment $5) and $2 for Experiment 2 (M =
1.53, SD = 0.56; base payment $13).
In Experiment 1, participants encountered two

types of tree structure (LEFT/RIGHT) and
completed eight trials each (Figure 3). Both tree
structures have five levels, including the root
node (Level 0). The root node has two children
(Level 1), both of which have two children (Level
2) as well. The left (right) child node of nodes at
Levels 2 and 3 in LEFT (RIGHT) tree has two
children, and the right (left) child node of nodes at
Levels 2 and 3 in LEFT (RIGHT) tree has zero
children. Nodes at Level 4 are all leaf nodes.
Trialswith LEFT andRIGHT tree structureswere
intermixed.
Experiment 2 expanded the tree structure

repertoire that participants could interact with.
We generated all 68 tree structures that have eight
leaf nodes, have at least one branch that reaches

five levels, and each node has either zero or two
child nodes. The LEFT and RIGHT tree struc-
tures used in Experiment 1 satisfied the above
requirements and were included in the set of
68 unique tree structures. Participants encoun-
tered each tree structure once. In both experi-
ments, the reward of each node is resampled at
the beginning of a new trial—that is, each trial
is associated with a unique reward map. An
experiment demo can be found here at https://lu
23taj5xe.cognition.run.

Planning-as-Exploration Model

We hypothesized that people would use
an exploration algorithm to determine which
node to visit next when performing rollouts in
the PLAN phase. Algorithm 1 provides the
pseudocode for the model, and a flowchart
of themodel is shown in Figure 4. Specifically,
our model uses a Bayesian variant of the
UpperConfidenceBound reinforcement learning
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Figure 3
LEFT and RIGHT Tree Illustrations

Note. For the LEFT (RIGHT) tree, nodes on the left (right) at Levels 2 and 3 (surrounded by red and gray
rectangles, respectively) have two child nodes, while their siblings have zero child nodes. The panels on the
right show the experiment interface for LEFT/RIGHT trees. See the online article for the color version of
this figure.
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algorithm (Gershman, 2018a; Schulz & Gershman,
2019; Srinivas et al., 2010), similar to that used in
Monte Carlo tree search (Liu & Tsuruoka, 2016).
Adopting a Bayesian approach allows our rein-
forcement learning model to quantify epistemic
uncertainty people hold in their belief about the
environment and derive normative ways to update
them (Bellemare et al., 2017). This Bayesian

reinforcement learning model assumes that nodes
are explored according to a priority score:

hs = v̂s + wσσs: (1)

That is, the priority, h, for exploring node s is a
weighted sum of that node’s estimated value, v̂,
and the uncertainty in that value, σ (derived using
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Figure 4
Planning-as-Exploration Model Flowchart

Note. Eq = equation.
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a Bayesian approach, defined below). The
balance between value and uncertainty is set by
the wσ parameter, with larger values indicating
more uncertainty-directed.2

At each step of a rollout, the model selects the
next node to visit by noisily maximizing over the
priority for the two child nodes, a and b. We
assume the noise is Gaussian with standard
deviation 1/β, leading to choice probability:

Pðs′ = aÞ = Φðβðha − hbÞÞ, (2)

whereΦ(·) is the cumulative distribution function
of the standard normal distribution. β can be
understood as a determinacy parameter. It is
analogous to an inverse softmax temperature3

used in other reinforcement learning models
(Dayan &Daw, 2008) and reflects the propensity
of the participant choosing the option with higher
priority score. Higher β indicates that the parti-
cipant’s choices are more sensitive to the priority
score difference between two options, just as a
higher inverse temperature indicates increased
sensitivity to the value difference among options.

Value Updates

Having defined the rollout policy, we now turn
to how rollouts update the estimated values. The
value of a node is the total amount of reward an
agent can expect to accumulate over the future
nodes, starting from that node. As mentioned
above, this Bayesian reinforcement learning
model tracks both the mean and variance
(uncertainty) in the value estimate of each node.
Given the underlying Gaussian distribution of the
rewards delivered at each node, we assume that
the posterior value estimate of node s is a
Gaussian distribution Nðv̂s, σ2s Þ.4 Larger v̂s re-
flects a higher point estimate of the value of node
s, and larger σ2s reflects a wider distribution—that
is, higher uncertainty surrounding the current
point estimate. Themodel updates these estimates
during the rollouts, applying a Bayesian Bellman
backup at each step. In our current setup, the value
of a node is its reward plus the value of its best
child (s*), the one with maximal estimated value.
However, if the value of that child node is itself
uncertain, this uncertainty must be “backed up”
into the value of its parent. In other words, the
uncertainty over the accumulated future rewards
(i.e., the value of the best child) should be re-
flected in the uncertainty of the value estimate of

the parent. We further assume that this backup
may be only partially applied (with a learning rate
parameter η ∈ [0, 1], reflecting how much the
value estimate of the current node is updated
based on new experience obtained during the
rollout), and that participants may discount future
rewards (with a discount parameter, γ ∈ [0, 1],
reflecting how much the value and uncertainty
estimate of the child node is propagated to the
corresponding statistics of its parent). This yields
the following update equations:

Δv̂s = ηðrs + γv̂s* − v̂sÞ, (3)

Δσ2s = ηðγ2σ2
s*
− σ2s Þ: (4)

These updates were applied backward along
the entire trajectory at the end of each rollout
during the PLAN phase.

Prior Value Sketch

To initialize the value estimates, we assume
that participants form a rough “sketch” (gist
memory) of the value function based on the 500
ms reward display at the beginning of each round.
Because value is composed of immediate reward
obtained at the current node and future long-term
reward collected across a set of future nodes, we
compute the value function sketch in two steps.
First, we use a Bayesian approach to derive esti-
mates of the individual rewards for each node by
combining a reward prior, Nðμr, σ2r Þ, and a noisy
observationof the true rewards,robs ∼Nðrtrue, σ2obsÞ.
It is possible that participants may have different
levels of memory precision for the reward of dif-
ferent nodes they have seen during the initial brief
reward display. The observation noise σ2obs is meant
to capture the overall imperfect gist memory under
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2 Though the uncertainty-seeking component is incorpo-
rated in priority score calculation as a heuristic, previous
theoretical work has shown that it can be derived from
rational principles (Gittins, 1979; Sezener et al., 2019).

3 Prior work has suggested that decision noise may itself be
an exploration parameter (Fan, Burke, et al., 2023; Fan,
Gershman, & Phelps, 2023; Gershman, 2018a, 2019; Lee et
al., 2023; Wilson et al., 2014); however, our experiments
were not designed to test this hypothesis.

4 Note that the posterior is only Gaussian if we ignore
uncertainty in the policy itself. Specifically, our belief update
assumes that the policy deterministically selects the action
with maximal estimated value at every state. This is a sim-
plifying assumption; see Tesauro et al. (2012) and Sezener
and Dayan (2020) for methods that incorporate policy-related
uncertainty into value estimation.
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limited time. For simplicity, we take a mean-
field approximation of the observation noise,
averaging over trial- and node-specific random-
ness due to, for example, differential attention.
This results in a posterior reward estimate
Nðr̂, σ2estÞ with parameters

σ2est =
1

1=σ2obs + 1=σ2r
,

r̂ =
rtrue=σ2obs + μr=σ2r

σ2est
:

(5)

In these equations, μr andσ2r are the truemean and
variance of the distribution from which rewards
are drawn (0 and 2.25, respectively). We arbi-
trarily set the observation noise as σ2obs = 0.25.
Given these reward estimates, we then compute

a distributional value function based on the suc-
cessor representation for a random walk policy
(Dayan, 1993; Gershman, 2018b). Intuitively,
we assume that participants know how likely
they are (in general) to visit each node starting
from any other node (e.g., they may want to
visit the node where they have observed high
reward during the initial reward display) at the
start of the planning process, but that they do
not initially account for how that probability
depends on their future actions, which may
depend on the rewards.
Formally, the random walk policy induces a

transition function, T, defined as:

Ts,s ′ =
�
1=jSsj s′ ∈ Ss

0 otherwise
, (6)

where Ss is the set of states accessible from state
s (the “children” of s). In our setup (Figure 2), Ss
is readily displayed on the screen to the par-
ticipant throughout the experiment; therefore,
they have all the information needed to cal-
culate T. The successor representation is
defined asM = (I − γT)−1. The value function
can then be computed as v̂ = Mr̂ (Dayan,
1993), that is, the product of transition matrix
and the reward estimates. However, this only
provides a point estimate, whereas we are inter-
ested in identifying a distribution that captures
uncertainty in the true value function. To do this,
we begin by adopting a probabilistic interpreta-
tion of the successor representation (Carvalho et
al., 2024; Eysenbach et al., 2021; Janner et al.,
2021), treatingMs,s′ as the probability of reaching

state s′ starting from s.5We can then approximate
the distribution over value as:

v
∼
s ∼

X
s ′

BernoulliðMs,s ′Þ · Nðr̂s ′, σ2estÞ: (7)

Finally, we initialize the value estimates using
its mean and variance:

v̂s = E½ v∼ s� =
X
s ′

Ms,s ′r̂s ′, (8)

σ2s = Var½ v∼ s� =
X
s ′

½Ms,s ′σ2est

+ Ms,s ′ð1 −Ms,s ′Þr̂2s ′�: (9)

The variance term is of particular interest because
it captures the initial uncertainty that we
hypothesize to drive participant’s early planning.
To intuitively understand this expression, observe
that the full variance is the sum of two terms. The
first term captures uncertainty in the rewards
themselves (σ2est), weighted by the probability that
they will be attained (Ms,s′). The second term
captures uncertainty in which of those rewards will
be attained (Ms,s′(1 − Ms,s′)) weighted by the esti-
mated magnitude of those rewards (br2

s ′
). Critically,

note that both of these termswill be larger for nodes
that have more successors. Thus, a tendency to
explorenodeswithmore successors (includingboth
children and indirect descendants) is consistent
with a preference for exploring nodes with
higher uncertainty.
Intuitively, participants will have more

uncertainty about the value of nodes with more
descendants for two reasons (corresponding to
the two terms in Equation 9): They mark the
beginning of both longer paths and also more
possible paths. Longer: all else equal, a node with
more descendants will be more steps from the
end. Each step comes with a reward of fixed
value; however, the participant is uncertain about
the value of this reward and this uncertainty
compounds over each step of the trial.More: each
step will typically involve making a choice,
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5 Note that we can directly interpret the entries of M as
probabilities because the task environment is tree-structured,
meaning each state can be visited at most once. However, M
only represents the marginal probability of each state—it
does not capture the dependencies between future states (e.g.,
you cannot visit two states at one depth). This is the sense in
which Equation 7 is approximate.
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leading to a “garden of forking paths.” Initially,
one does not know which way one will go; the
uncertainty in one’s own future actions translates
into uncertainty about which rewards one will
actually receive, that is, the value of node.

Model Fitting

We implemented our planning-as-exploration
model in Stan (Stan Development Team, 2024)
and fit it to participants’ choice data from the
PLAN phase. Similar to previous work (Ahn et
al., 2017; Aylward et al., 2019; Lei & Solway,
2022), we use Stan only to infer distributions over
model parameters given experiment data and the
model. The Bayesian Bellman backup defined in
Equation 4 is implemented analytically as part of
the deterministic structure of the model. We fit
participant-specific parameters for the learning
rate η and the discount factor γ, and both group-
level and participant-level parameters for coef-
ficients β and wσ (see Appendix B for parameter
recovery details). For the i’th participant, we set
the priors on participant-specific parameters as
follows:

ηi = φðαÞ, α∼Nð0,1Þ, (10)

γi = φðθÞ, θ∼Nð0,1Þ, (11)

βi ∼Nðμ1, σ1Þ, (12)

wσi ∼Nðμ2, σ2Þ: (13)

The group-level parameters were given weakly
informative hyper priors:

μ1 ∼Nð0,1Þ, μ2 ∼Nð0,1Þ, (14)

σ1 ∼N + ð0,1Þ, σ2 ∼N + ð0,1Þ, (15)

whereN+(0, 1) denotes the half-normal distribution.

Algorithm 1 Planning-as-Exploration

1: Initialize value estimate v̂s and uncer-
tainty σ2s for all s ∈S

2: while time < tmax do

3: s ← root node

4: τ ← empty trajectory

5: while s has children do

6: Compute priority score for each
child c: hc = v̂c + wσ · σc

7: Sample next node s′ from children of
s: P ðs′jsÞ = Φðβ · ðhs ′ − hotherÞÞ

8: Append s′ to τ
9: s ← s′

10: end while

11: for all s ∈ τ (reverse order) do

12: s* ← child of s with highest v̂s*

13: v̂s ← v̂s + α · ðrs + γ · v̂s* − v̂sÞ
14: σ2s ← σ2s + α · ðγ2 · σ2s* − σ2sÞ
15: end for

16: end while

For each model, Markov Chain Monte Carlo
was run with four chains. Each chain was run for
2,000 iterations, using the first 1,000 for warmup.
TheGelman–Rubin R̂ statistic was computed and
ensured to be less than 1.1 for all variables. We
report the median estimate of posterior distribu-
tion and the 95% highest posterior density in-
tervals (HDIs).We treated an effect as statistically
credible if the parameter’s 95% HDI did not
contain 0.

Model-Agnostic Analysis

To supplement this model-based analysis, we
also analyzed participants’ choices in a more
model-agnostic way. Concretely, we modeled
participants’ choices as a function of the number
of child nodes (nchild) and the number of indirect
descendants (nind):

Pðs′ = aÞ = Φðwchildðnchild,a − nchild,bÞ
+ windðnind,a − nind,bÞ
+ wvalðv̄a − v̄bÞÞ, (16)

where v̄a is computed as the average return
received from node a prior to the current rollout,
serving as an empirical proxy for the posterior
mean estimate v̂a. It is alsoworth noting that since
all tree structures are full binary trees (i.e., each
node has zero or two child nodes), there exist
three levels of relative number of child nodes:−2,
0, and 2. Given the LEFT/RIGHT tree design in
Experiment 1, there exist three levels of relative
number of indirect descendants as well: −2, 0, 2.
In Experiment 2,moreflexible tree structures lead
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to more possible value for the relative number of
indirect descendants, ranging from −10 to 10.
Our model simulation results suggest that when
the uncertaintyweightwσ is positive,wchild andwind

are also positive (Figure 5A). In other words, a
positive weight on uncertainty-driven explora-
tion translates into a preference for visiting nodes
with more successors in the model-agnostic
analysis. Note that this preference for visiting
nodes with more future states exists when the
estimated value difference is zero (x = 0 in
Figure 5C and 5D)—that is, when participants
have no prior information about the reward
distribution or when the value estimates for two
nodes are nonzero but equivalent.
For this model-agnostic regression, we fit a

Bayesian generalizedmixed-effects model with a
probit link function, the same link function used
in Equation 2, and included fixed and random
effects for all regressors (wchild, wind, and wval).
Regressors were standardized before entering the

regression. The random effects were drawn from
a multivariate Gaussian distribution with mean
zero and unknown covariance matrix. We im-
plemented the model with the brms R package
(Bürkner, 2017), using the default prior for fixed
effects (an improper flat prior over the reals).
We used the same Markov Chain Monte Carlo
sampling hyper-parameters and convergence
criteria as for the main model.

Results

Overall, participants performed the task well,
choosing the more rewarding node 73.3% of the
time during EXECUTE phase. Though not
required, peoplemade use of the PLANphase.On
average, people carried out 4.52 rollouts per
graph (Experiment 1: 4.87; Experiment 2: 4.51)
and 91.2% of the rollouts reached a leaf node
(Experiment 1: 90.5%; Experiment 2: 91.4%).
People also primarily visited the nodes that they
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Figure 5
Simulated Choice Probability Grouped by Number of Child Nodes and Indirect Descendants Using Different
Parameter Combinations

(A) (B)

(C) (D)

Note. All data are simulated using Equations 1–9 with different parameter combinations. In (Panels A and B), the
determinacy parameter β is fitted and uncertainty weightwσ is fixed at 0 (i.e., no uncertainty seeking). In (Panels C and D) both
determinacy parameter and uncertainty weight are fitted for the full model. We use fitted parameter values (see Figures 7D and
7E) as generative parameters. Because all tree structures are full binary trees, the yellow (green) line in (Panels A and C)
corresponds to the situation where the node on the left (right) has zero child nodes while its sibling has two child nodes. The
gray lines correspond to the situation where all nodes on the same level have either zero or two child nodes. For (Panels B and
D), we only plot data where both nodes at the current layer has the same number of child nodes—that is, data contributing to
the gray lines in (Panels A and C). The lines show the probit regression fit, and the points show binned means. The standard
deviation of reward distribution is 1.5. Error bars indicate standard error. Gray ribbons indicate 95% confidence interval of the
predicted values. See the online article for the color version of this figure.
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inspected during the PLAN phase (Experiment 1:
92.0% trials; Experiment 2: 93.0%). Finally,
people who planned more (i.e., carried out more
rollouts), earned more rewards during the
EXECUTE phase, Experiment 1: r(37) = 0.66;
Experiment 2: r(43)=0.52, bothp< .001; Figure6.
These results suggest that the PLAN phase effec-
tively probes planning.

Planning Reflect Both Value- and
Uncertainty-Seeking

Our model proposes that human planners
selectively explore states that have both high
estimated value and high uncertainty in value
(Equation 1). More concretely, simulations
(Figure 5) revealed that the model predicts that
people will be more likely to move to nodes
from which more reward has been gained on
average (v̄), as well as nodes that have more
children (nchild; our experimental manipulation).
These two features act as empirical proxies of
estimated value v̂ and uncertainty σ in Equation 1,
respectively. Intuitively, participants will have
more uncertainty about the value of nodes with

more descendants because there aremore rewards
one could potentially gain after visiting that node.
As illustrated in Figure 7A, our prediction was

confirmed. Applying the Bayesian probit regres-
sion described above (Equation 16), we found that
participant choices in the PLAN phase were pos-
itively related to both value (wval; Experiment 1:
M = 0.16, 95% HDI [0.11, 0.23]; Experiment 2:
M = 0.19, 95% HDI [0.16, 0.22]) and number of
children (wchild; Experiment 1:M=0.24, 95%HDI
[0.19, 0.29]; Experiment 2: M = 0.20, 95% HDI
[0.17, 0.22]). See Figure 7C for posterior estimates
of each coefficient.
We additionally found that participants were

sensitive to a more farsighted indicator of
uncertainty: the number of indirect descendants,
that is, the number of nodes that could be reached
in more than one step. Because the true value
(cumulative future reward) of each child node
depends on all its descendants, two nodeswith the
same number of child nodes but different num-
bers of indirect descendants will have different
levels of uncertainty. This preference for nodes
with more indirect descendants is also predicted
by our model (Figure 5D). Indeed, only consid-
ering cases where the two immediately available
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Figure 6
Relationship Between Average Number of Rollouts During the PLAN Phase
and Performance During the EXECUTE Phase

Note. Each point represents one participant. Each line shows a linear fit. The shaded
area represents the 95% confidence interval. See the online article for the color version
of this figure.
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nodes had the same number of children, parti-
cipants were more likely to explore the node with
more indirect descendants (wind; Experiment 1:
M = 0.13, 95% HDI [0.08 0.17]; Experiment 2:
M = 0.22, 95% HDI [0.20, 0.24]; Figure 7B).
Having confirmed our preregistered behavioral

predictions, we then fit our theoretical model
(Equation 2) directly to participants’ planning

behavior. This model implicitly captures all the
effects described above, as well as more specific
belief-updating dynamics that could yield more
precise measures of value and uncertainty. The
fullmodel outperformed nestedmodelswhere the
coefficient for value or uncertaintywasfixed to be
0 (Table 1). In addition, the full 95% credible
intervals for the group estimates of β andwσwere
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Figure 7
Empirical Choice Probability (Panels A and B), Coefficient Estimates FromModel-Agnostic Regression (Panel C)
and Planning-as-Exploration Model (Panels D and E) During PLAN Phase

(A)

(C) (D) (E)

(B)

Note. Top panel shows empirical choice probability grouped by number of child nodes (Panel A) and indirect descendants
(Panel B). For (Panel B), we only plot data where both nodes at the current layer has the same number of child nodes—that is,
data contributing to gray lines in (Panel A). The standard deviation of the reward distribution is 1.5. The lines show the probit
regression fit, and the points show binned means. Error bars indicate standard error. Gray ribbons indicate 95% confidence
interval of the predicted values. Panel C: Shows coefficient estimates for value difference, relative number of child nodes, and
relative number of indirect descendants during the PLAN phase for Experiments 1 and 2. Panels D and E: Show posterior
estimates of determinacy β and uncertainty weight wσ in Experiments 1 and 2. Vertical lines indicate posterior median
estimate of the group-level effects. Shaded areas indicate 95% credible interval of the posterior coefficient estimates. See the
online article for the color version of this figure.

Table 1
Model Comparison Results for Experiments 1 and 2 Using the LOOIC

Model specification Experiment 1 Experiment 2

Model 1 (no uncertainty seeking) 12538.15 56689.44
Model 2 (no value sensitivity) 12124.44 55144.66
Model 3 (full model) 12085.62 54672.62

Note. Leave-one-out information criterion (LOOIC) is computed as −2 × Expected
Log Pointwise Predictive Density. It should be compared for the same experiment
across models (i.e., column-wise). Smaller LOOIC indicates better model fit and the
smallest LOOIC per column is bolded. For Model 1, the determinacy parameter β is
fitted and the uncertainty weight wσ is fixed at 0. For Model 2, the uncertainty weight
is fitted and the coefficient for value in Equation 1 is fixed at 0. For Model 3, both the
determinacy parameter and the uncertainty weight are fitted.
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above 0 (Experiment 1 β: M = 0.061, 95% HDI
[0.052, 0.071], wσ: M = 4.58, 95% HDI [3.46,
4.60]; Experiment 2 β: M = 0.065, 95% HDI
[0.054, 0.077], wσ: M = 5.51, 95% HDI [4.64,
5.52]; Figure 7D and 7E).
The results above suggest that our participants

were sensitive to value and uncertainty when
choosing which action to simulate next during
planning.However, it is possible that these results
reflect an inherent preference for states that have
more descendants (i.e., “keeping your options
open”; Navarro et al., 2018). To address this, we
conducted an exploratory analysis using a dif-
ferent measure of uncertainty: The number of
times each node had been previously visited
while planning. This metric has been applied in
other planning algorithms such as upper confi-
dence bounds applied to trees (Kocsis &
Szepesvári, 2006) and Alpha Go. Intuitively,
the more times that a node have been visited, the
more rollouts have been performed, which in
turn reduces the uncertainty through updates
(Equation 3). As shown in Figure 8, participants
were more likely to explore nodes that had been
visited less often, controlling for both estimated
value and the number of descendants (coefficient
for previous visit; Experiment 1:M =−0.44, 95%

HDI [−0.52, −0.37]; Experiment 2: M = −0.38,
95% HDI [−0.44, −0.33]).

Uncertainty-Seeking Is Selective to Planning

Having confirmed an influence of uncertainty
on participants’ planning, we next considered a
more subtle question. Is the exploratory behavior
we observed specific to planning, or does it
instead reflect a general influence of uncertainty
that is not sensitive to the functional demands of
planning versus acting? Intuitively, simulated
actions should be more sensitive to uncertainty
(and less sensitive to value) because these si-
mulations can directly inform the upcoming
choice (and do not incur real consequences). In
contrast, real actions should be more sensitive to
value (and less sensitive to uncertainty) because
they have real consequences (and have a less
immediate impact on future choice—in our task,
one cannot learn any useful information while
acting).
To test this intuitive prediction, we conducted

an exploratory analysis comparing behavior in
the two phases. As shown in Figure 9A, parti-
cipants were sensitive to both value and number
of children in both phases. However, while
uncertainty dominated in the PLAN phase, value
dominated in the EXECUTE phase. To statisti-
cally confirm this pattern, we regressed choices
on relative value and relative number of child
nodes, using the phase as an interaction term.
Concretely, we constructed a regression analo-
gous to Equations 1 and 2 to obtain parameters
comparable to the determinacy β and uncertainty
weight wσ in the model-based analysis:

Pðs′ = aÞ = βproxyððv̄a − v̄bÞ
+ wproxy

σ ðnchild,a − nchild,bÞÞ: (17)

We then collapsed the data across the PLAN
and EXECUTE phases and include interactions
between the proxy parameters and the experiment
phase. Consistent with our prediction, we found
that people put less weight on uncertainty in the
EXECUTEphase (interaction betweenEXECUTE
phase and wproxy

σ ; Experiment 1:M = −1.15, 95%
HDI [−2.35, −0.87]; Experiment 2: M = −1.04,
95% HDI [−1.31, −0.80]; Figure 9D). People are
also more deterministic during the EXECUTE
phase (interaction between EXECUTE phase
and βproxy; Experiment 1: M = 1.10, 95% HDI
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Figure 8
Empirical Choice Probability Grouped by Number of
Previous Visits

Note. Choice probability was modeled using probit regres-
sion. The yellow (green) lines correspond to the situation where
the node on the left (right) has been visited more frequently
than its sibling before the current choice. The gray lines cor-
respond to the situation where all nodes on the same level have
been visited the same number of times before the current
choice. The lines show the probit regression fit, and the points
show binned means. The standard deviation of reward distri-
bution is 1.5. Error bars indicate standard error. Gray ribbons
indicate 95% confidence interval of the predicted values. See
the online article for the color version of this figure.
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[0.97, 1.23]; Experiment 2:M = 1.15, 95% HDI
[0.99, 1.32]; Figure 9C).
Conducting a similar analysis using the plan-

ning-as-exploration model (fit to each stage
separately), we found that participants put a
higher weight on model-derived uncertainty in
the PLAN phase (PLAN–EXECUTE Δwσ;
Experiment 1: M = 3.39, 95% HDI [2.21, 4.61];
Experiment 2: M = 4.35, 95% HDI [3.48, 5.12];
Figures 9C and 9D) and showed overall more
deterministic behavior in the EXECUTE phase
(PLAN–EXECUTE Δβ; Experiment 1: M =
−0.49, 95% HDI [−0.57, −0.42]; Experiment 2:
M=−0.52, 95%HDI [−0.59,−0.45]; Figures 9C
and 9D).
The differential effect of uncertainty on deci-

sion during PLAN and EXECUTE is also re-
flected when we quantify uncertainty as the
number of times the node had been previously
visited during planning. By regressing choices
with previous visit, estimated value, number of
descendants and interactions between parameters
and experiment phase, we find that the effect of
previous visits is actually opposite in the two
phases (Figure 9B): while people tend to visit
nodes that they have visited less often before

during PLAN phase, they tend to visit the option
with more accumulated visits during EXECUTE
phase (interaction between EXECUTE phase and
coefficient for previous visit; Experiment 1:M =
0.78, 95% HDI [0.67, 0.88]; Experiment 2: M =
0.82, 95% HDI [0.77, 0.87]).

Discussion

In two experiments, we studied the guidance of
planning by uncertainty. The central hypothesis
was that mental exploration of decision trees may
involve mechanisms similar to overt exploration
of environments during reinforcement learning
(Schulz & Gershman, 2019). In support of this
hypothesis, we reported several converging mea-
sures showing that people tend to explore parts of
the decision tree with greater uncertainty (i.e.,
nodes with more children and indirect descen-
dants). Quantitative comparison of computational
models confirmed that an uncertainty bonus (in
addition to value) improves fit to human data. We
also found that this uncertainty seeking was
selective to planning, over and above a general
tendency to take actions that lead to more future
choices.
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Figure 9
Empirical Choice Probability in the PLAN Phase (Panels A and B), Coefficient Estimates in the PLAN/
EXECUTE Phases (Panels C and D)

(A) (B) (C)

(D)

Note. Empirical choice probability curves are grouped by number of child nodes (Panel A) and number of previous visits
(Panel B). Panels C and D show coefficient estimates for determinacy proxy, uncertainty weight proxy, and their interactions.
In (Panels A and B), dotted lines and translucent points are data from EXECUTE phase (Figures 7A and 8, left column),
replotted here to aid visual comparison. The solid lines show the probit regression fit, and the points show binned means. Error
bars indicate standard error of the mean. Gray ribbons indicate 95% confidence interval of the predicted values. In (Panels C
and D), interaction terms are calculated using the PLAN phase as the reference level. Vertical lines indicate posterior median
estimate of the group-level effects. Shaded areas indicate 95% credible interval of the posterior coefficient estimates. See the
online article for the color version of this figure.
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Our experimental paradigm has two important
features. First, the planning phase has a time limit
(a maximum of 20 s). The time limit makes it
almost impossible to visit all nodes during
planning,much like in naturalistic planning tasks.
Therefore, this design reduces the possibility of
using strategies whose objective is to visit all
states (e.g., breath-first or depth-first search).
Second, before the start of the planning phase, all
the rewards were flashed quickly to the partici-
pant. This differs from previous work using the
Mouselab-MDP paradigm, where participants
need to click the node to reveal the reward for the
first time (Callaway, van Opheusden, et al.,
2022). Therefore, the act of visiting a node in the
current setup is ostensibly not for revealing
reward information but rather for reducing
uncertainty in the value estimate.6 In addition,
both the rewards and the tree structure varies
from trial to trial, especially in Experiment 2
where all tree structures are different. This
design prevents people from memorizing fixed
action sequences (Huys et al., 2015).
A diverse set of tree structures in Experiment 2

also allows a more nuanced manipulation on
uncertainty. First, there exist situations in
Experiment 2 where two nodes have different
number of indirect descendants yet equal number
of child nodes, which is not the case for LEFT and
RIGHT tree structure used in Experiment 1. The
positive coefficients for both child nodes and
indirect descendants in Experiment 2, thus pro-
vide strong evidence that people are sensitive to
both nearsighted and farsighted indicators of
uncertainty. Second, the number of indirect
descendants has a wider range in Experiment 2
compared to Experiment 1. As shown in Figure 2,
the relative number of indirect descendants of a
node has three possible values: 0 (nodes at
Levels 3 and 4), 2 (nodes at Level 2 surrounded
by red rectangles), and−2, while in Experiment
2, this farsighted uncertainty variable ranges
from −10 to 10. The increased variability in the
number of indirect descendants could poten-
tially explain the main difference in results
between two experiments: though in both ex-
periments people show a clear preference for the
node with more child nodes and indirect des-
cendants, participants in Experiment 1 are more
sensitive (i.e., larger coefficient estimate) to a
change in the relative number of child nodes
than to the change in the relative number of direct
descendants, whereas the coefficients for child

nodes and indirect descendants do not differ in
Experiment 2.
Uncertainty-directed actions occurred more

frequently during the planning phase compared to
the execution phase, consistent with the inter-
pretation that these actions primarily reflect
exploration in support of planning. Intriguingly,
we still found evidence for (weaker) uncertainty-
directed exploration during execution, mani-
festing as a continued preference for the node
with more successors (Figure 9A) and a positive
uncertainty weight wproxy

σ (Figures 9C and 9D).
This raises a normative computational question:
Why does uncertainty persist in influencing ac-
tions even during the execution phase? Presently,
we can only offer speculation. One possibility is
that participants continued to engage in planning
even after the planning phase; this would indicate
that our externalization protocol was not entirely
successful. Another possibility is that participants
have an intrinsic preference for information,
separate from its instrumental role in planning
(van Lieshout et al., 2020).
It is important to note that the majority of

previous studies, where the planning phase is not
externalized, tend to assume that people stick to
their plan after its formation. Our finding that
people still show preference for nodes with more
successors after controlling for value estimates
during EXECUTE phase challenges this assump-
tion. In addition, we have shown that, although
infrequent, people visit nodes that they have not
inspected during the PLAN phase. This is in line
with recent work extending uncertainty-driven
exploration from a one-step multiarmed bandit
problem to a temporally extended decision-
making setting (Antonov&Dayan, 2023; Fox et
al., 2023).
At first glance, the distinction between PLAN

and EXECUTE phases in our study resembles
the sampling paradigm that is typically used to
study decisions from experience and information
sampling, where people gather information about
the outcome of available options prior to com-
mitting to a single choice (Clark et al., 2006;
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6 Arguably, the brief exposure to the rewards means the
rewards are remembered imperfectly by participants, and
therefore visiting the nodes during planning does in fact
provide information. Future work will be needed to inves-
tigate the extent to which this occurs. In addition, note that
uncertainty in the value estimate can be reduced even if the
immediate reward was remembered perfectly by integrating
information about the following rewards.
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Gonzalez & Dutt, 2011; Hertwig & Erev, 2009;
Hertwig et al., 2004; Hunt et al., 2016; Rakow &
Newell, 2010). Despite the seemingly similar
separation, the task structure of the sampling
paradigm is very different from our experi-
mental paradigm, which presumably leads to
different feasible strategies andcognitiveprocesses
supporting these strategies. First, the outcomes
observed in the sampling paradigm are usually
outcomes drawn from a distribution—that is,
participants donot haveaccess to the truepayoff. In
our study, participants directly observe the ground
truth reward without noise—that is, the payoff
structure is deterministic. Therefore, it is unlikely
that participants visit one node for the sake of
approximating the rewarddistribution. Second, the
sampling paradigm is mostly applied to study
single-stepdecisionmakingand focuses on the role
of external risk, while we examine the algorithms
people adopt during planning in a more complex,
multistep scenario. Nonetheless, it would be
interesting for future research to compare people’s
weight of uncertainty-driven exploration with
people’s uncertainty attitude under different
decision-making scenarios (e.g., risk and ambi-
guity attitude) to see if they stem from the same
underlying mental construct.
The present study has several limitations. First,

the experiment only allows rollout-based plan-
ning. We chose this design in part because it
allowed us to directly apply exploration strategies
from reinforcement learning to model partici-
pant’s planning. This comes at the cost of not
being able to compare our model to search al-
gorithms that are not rollout-based such as best-
first search (van Opheusden et al., 2023).
Importantly, however, our finding that people
use value uncertainty to guide their search could
be translated to such models, which typically
prioritize based on estimated value alone.
However, this restriction may also act as a
countermeasure against an artifact of the task.
Specifically, visually presenting the full state
space makes it easy to jump between different
parts of the tree (e.g., by making a saccade).
When planning entirely in one’s head (as one
must typically do), these jumps would likely incur
substantial cognitive/computational cost. Indeed,
artificial planning agents often use rollout-based
strategies when dealing with extremely large state
spaces (Barto et al., 1995; Silver et al., 2016). Thus,
by restrictingparticipants to this classof strategies in
our task, we may be better equipped to understand

the way they would plan in a real-world problem.
On the other hand, people and animals can employ
other planning strategies, including ones that work
backwards from desirable states (Afsardeir &
Keramati, 2018; Newell & Simon, 1972; Sharp &
Eldar, 2024). Understanding the role of uncer-
tainty in these types of algorithms is an important
direction for future work.
A second limitation is that, despite the fact that

people cannot exhaustively traverse the state space
in our task, there is a substantial gap between the
complexity of our task and the complexity of real-
world planning problems (van Opheusden & Ma,
2019; van Opheusden et al., 2023). More compli-
cated planning scenarios could involve larger state
spaces, dependency between states, and nonsta-
tionary rewards. These features impose challenges
on appropriate uncertainty estimation (e.g., if re-
wards are interdependent among a set of states,
peoplemay update the uncertainty estimate of these
states jointly instead of sequentially), which could
interact with the usage of uncertainty-driven
exploration during planning.
In summary, the present study examined the

mental exploration process during planning with
a task that allows us to externalize the planning
process together with an experiment design that
exogenously manipulates the value uncertainty
in different states. Our results show that people
have a preference for approaching options about
which they are more uncertain during planning
(after controlling for value differences), sug-
gesting that the mental exploration process,
similar to exploration during reinforcement learn-
ing, is guided by uncertainty.
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Appendix A

Task Instructions

The instructions for participants in Experiments
1 and 2 are as follows:

In this game, you—the pumpkin candy jar—
are going to travel from house to house (colored
circles) in a neighborhood and collect candies on
your way. Your goal is to collect as many candies
as possible.
You are going to use the arrow keys to move

between houses via paths, represented as ar-
rows. You can only travel in the direction
specified by the arrows. On each path, it is
possible to collect or drop candies. A path’s
goodness does not depend on its location and
direction. You will see how many candies you
have collect/drop after you walked through the
path, indicated by positive and negative num-
bers, respectively. You will also see how many
candies in total you have on the top right corner
of the screen.
I am now going to introduce you to ghost

mode! During ghost mode, you can visit different
paths as a ghost to inspect how many candies you
are going to collect/drop on each path, indicated by
positive and negative numbers, respectively. Your
avatar will be see through. These numbers will
remainon the screenduring theghostmode, and the
sum of the total ghost candy for the current path is
going to show up on top right to help you track the
goodness of the path.
In eachgame, youwill start as a ghost.Whenyou

are ready to embark your trick-or-treat adventure,
press t to enter trick-or-treat mode.
You will start from the initial location to

collect treats! Note that if you have already
entered the trick-or-treat mode, you canNOTbe
a ghost again in this round. So use the ghost
mode wisely!

During ghost mode, if at any moment you want
to return back to the starting point to explore a
different path, press SPACE. You can return to the
starting point at anymoment when you are in ghost
mode—that is, you can return to the starting point
before you hit the end of the path. In this game, you
will have the opportunity to earn up to $X bonus by
collecting as many treats as possible. You will
receive a bonus proportional to the number of treats
you collect in the game.Note:Ghost treats areNOT
real treats. Only treats you collect in trick-or-treat
mode matter.

Let me introduce two more features of the
game before we start the game.

1. Candy map: At the beginning of each
round, the whole candy map—that is, how
many treats you will collect/drop on each
path—will briefly show up on the screen.
During this period time, you can NOT
move or change mode. After the candy
map disappears, you can start exploring
the neighborhood as what you have done
in previous practices.

2. Time limit: There is a time limit on how
long you can be as a ghost. You will have at
maximum 20 s. You do not need to use up
the 20 s—You can enter trick-or-treat mode
at any time within 20 s when you feel ready
to start collecting treats. Again, note that
as long as you have entered trick-or-treat
mode, you can NOT be a ghost any more
for the current round. So use the ghost
mode wisely! In addition, if you have used
up 20 s as a ghost, you cannot be a ghost
anymore and will be forced to enter trick-
or-treat mode.

Appendix B

Parameter Recovery

We simulated the model (Equations 1–9) and
compared the correlation between generated and
fitted parameters to test for the parameter recov-
erability. For generated parameters, learning rate η

and discount factor γ are sampled from a uniform
distributionUð0,1Þ. Determinacy parameter β and
uncertaintyweightwσare sampled fromaGaussian
distribution Nð0,1Þ. For each simulation, we

(Appendices continue)
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randomly select the set of trials (i.e., identical
conditions and reward structure) encountered
by one participant in either Experiment 1 or
Experiment 2 and simulate the choice trajec-
tory using generative parameters. The simu-
lation process was repeated 100 times. The
fitted weights highly correlated with their

generative counterparts (β: r = 0.95; wσ: r =
0.93; both p < .001).
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Members of Underrepresented Groups:
Reviewers for Journal Manuscripts Wanted

If you are interested in reviewing manuscripts for APA journals, the APA Publications
and Communications Board would like to invite your participation. Manuscript reviewers
are vital to the publications process. As a reviewer, you would gain valuable experience
in publishing. The P&C Board is particularly interested in encouraging members of
underrepresented groups to participate more in this process.

If you are interested in reviewing manuscripts, please write APA Journals at
Reviewers@apa.org. Please note the following important points:

• To be selected as a reviewer, you must have published articles in peer-reviewed
journals. The experience of publishing provides a reviewer with the basis for preparing
a thorough, objective review.

• To be selected, it is critical to be a regular reader of the five to six empirical journals
that are most central to the area or journal for which you would like to review. Current
knowledge of recently published research provides a reviewer with the knowledge base
to evaluate a new submission within the context of existing research.

• To select the appropriate reviewers for each manuscript, the editor needs detailed
information. Please include with your letter your vita. In the letter, please identify which
APA journal(s) you are interested in, and describe your area of expertise. Be as specific
as possible. For example, “social psychology” is not sufficient—you would need to
specify “social cognition” or “attitude change” as well.

• Reviewing a manuscript takes time (1–4 hours per manuscript reviewed). If you are
selected to review a manuscript, be prepared to invest the necessary time to evaluate the
manuscript thoroughly.

APA now has an online video course that provides guidance in reviewing manuscripts. To
learn more about the course and to access the video, visit https://www.apa.org/pubs/
journals/resources/review-manuscript-ce-video.aspx
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