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Controllability governs the balance between
Pavlovian and instrumental action selection

Hayley M. Dorfman® ™ & Samuel J. Gershman® !

A Pavlovian bias to approach reward-predictive cues and avoid punishment-predictive cues
can conflict with instrumentally-optimal actions. Here, we propose that the brain arbitrates
between Pavlovian and instrumental control by inferring which is a better predictor of reward.
The instrumental predictor is more flexible; it can learn values that depend on both stimuli
and actions, whereas the Pavlovian predictor learns values that depend only on stimuli. The
arbitration theory predicts that the Pavlovian predictor will be favored when rewards are
relatively uncontrollable, because the additional flexibility of the instrumental predictor is not
useful. Consistent with this hypothesis, we find that the Pavlovian approach bias is stronger
under low control compared to high control contexts.
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long-standing distinction holds that a Pavlovian learning

system controls behavioral responses based on stimulus-

outcome relationships (independently of actions),
whereas a separate instrumental learning system controls
responses based on stimulus-action-outcome relationships. In
violation of this strict dichotomy, Pavlovian processes are known
to promote approach towards reward-predictive stimuli and
avoidance of punishment-predictive stimuli!, even when they
produce maladaptive behavior?. For example, Hershberger?
famously demonstrated that newborn chicks struggled to learn
that they should walk away from a cup of food in order to obtain
it. The chicks could not suppress their Pavlovian tendency to
move toward the cup, which was rigged to move farther away as
the chicks approached. Another example of this phenomenon,
referred to as Pavlovian misbehavior, comes from studies of
autoshaping, in which animals interact with a reward-predictive
cue (e.g., pigeons will peck a keylight that precedes pellet delivery)
despite the fact that these behaviors do not affect the reward
outcome. If an omission contingency is then introduced, such
that expression of these behaviors causes the reward to be with-
held, animals will sometimes persist in performing the mala-
daptive behavior, a phenomenon known as negative
automaintenance?. Humans also exhibit Pavlovian misbehavior
in Go/No-Go tasks, erroneously acting in response to reward-
predictive stimuli when they should withhold action, and erro-
neously withholding action in response to punishment-predictive
stimuli when they should act>®.

The idea that instrumental and Pavlovian processes coexist and
compete for control of behavior has been a long-standing fixture
of associative learning theory’~%, and more recently has been
formalized within the framework of modern reinforcement
learning theories!?. These theories have typically assumed that
instrumental and Pavlovian processes each provide action values,
which are then linearly combined to produce composite action
values that control behavior. A weighting parameter determines
the degree of Pavlovian influence, and this parameter is fit to each
participant in the experimental data set. In this paper, we argue
that the weighting parameter is determined endogenously by an
arbitration process, much like an influential proposal for the
arbitration between model-based and model-free reinforcement
learning strategies!!.

Our theory of arbitration is based on the idea that Pavlovian
and instrumental processes can be understood as constituting
different predictive models of reward (we will use the terms
‘predictor’ and ‘model’ interchangeably, except where we dis-
tinguish the brain’s internal models of the environment from
our models of the brain). The instrumental predictor learns
reward expectations as a function of both stimuli and actions,
whereas the Pavlovian predictor learns reward expectations as a
function only of stimuli. Thus, the instrumental predictor is
strictly more complex than the Pavlovian predictor: it can
capture any pattern that the Pavlovian predictor can capture, as
well as patterns that the Pavlovian predictor cannot capture. The
cost of this flexibility is that the instrumental predictor can also
overfit on a finite data set, which means that it will generalize
poorly due to fitting noise. The basic problem of arbitration is
thus to negotiate a balance between capturing the patterns in the
data (favoring the more complex instrumental predictor) and
avoiding overfitting (favoring the less complex Pavlovian
predictor).

Bayesian model averaging elegantly resolves this problem by
weighting each predictor’s output by the posterior probability of
the predictor given the data. The posterior will tend to favor
predictors of intermediate complexity, due to what is known as
Bayesian Occam’s razor!2. We can think of each predictive model
as ‘betting’ on observing particular data sets (Fig. 1a). Simple

models concentrate their bets on a relatively small number of data
sets, whereas complex models distribute their bets across a larger
number of data sets. If a simple model accurately predicts a
particular data set, it is rewarded more than a complex model,
because it bet more on that data set. If the model is too simple
(i.e., its bets are too narrowly concentrated), it will fail to predict
the observed data.

Another perspective on the same idea comes from the bias-
variance trade-off!3-1>. Any predictor’s generalization error (i.e.,
how poorly it predicts new data after learning from a finite
amount of training data) can be decomposed into the sum of
three components: squared bias, variance, and irreducible error.
Bias is the systematic error incurred by adopting an overly
simple model that cannot adequately capture the underlying
regularities in the data. Variance is the random error incurred by
adopting an overly complex model, which causes the model to
overfit random noise in the training data. The irreducible error
arises from the inherent stochasticity of the data-generating
process, which is independent of the predictor. Bias can be
reduced by increasing model complexity, but at the cost of
increasing variance. Optimal generalization error is achieved at
an intermediate level of complexity where the sum of squared
bias and variance (i.e., the reducible error) is minimal (Fig. 1b).
The bias-variance trade-off is closely connected to the Bayesian
model averaging perspective, because predictive models with
higher posterior probability will tend to have lower general-
ization error!®,

Applying these ideas to arbitration between Pavlovian and
instrumental control, a key determinant of the optimal model
complexity is controllability of reward!”!8. If rewards are
uncontrollable (actions do not affect reward rate), then the sim-
pler Pavlovian predictor will be favored by the posterior, because
the additional complexity of the instrumental predictor is not
justified relative to the penalty imposed by the Bayesian Occam’s
razor. Only when rewards are sufficiently controllable, or once
sufficient data have been observed, will the instrumental predictor
be favored (asymptotically, the instrumental predictor will always
be favored, because the risk of overfitting noise disappears as the
data set becomes large).

We test the predictions of the Bayesian arbitration model by
manipulating reward controllability in two Go/No-Go experi-
ments, using the Pavlovian Go bias observed in previous
experiments!®?0 as an index of Pavlovian control. As a com-
plementary window into the arbitration process, we also explore
how controllability affects the bias-variance trade-off.

a Simple model b
== Complex model

= Variance

— Bias®

P(modelldata)
Error

|

All possible data sets Model complexity

Fig. 1 Two perspectives on model complexity. a Bayesian Occam's razor.
Complex models distribute their probability mass across many different
data sets, and thus get less credit for observing any particular data set,
whereas simple models concentrate their probability mass on a small
number of data sets, and thus, get relatively more credit when those data
sets are observed. b As model complexity increases, generalization error
due to bias decreases, while generalization due to variance increases.
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Fig. 2 Behavioral task details. a Participants viewed a colored shape cue (for up to 2's) and had to decide whether to press the space bar (Go) or refrain
from pressing the space bar (No-Go). They then received feedback (1.5 s) denoted by dollar signs (reward) or a rectangular cue (neutral). Participants were
instructed that they would receive a small amount of real bonus money for each rewarded outcome, and no bonus money for each neutral outcome.
Feedback was followed by an inter-trial-interval (ITl, 1.5 s). b Reward contingencies for each trial type (Go-to-Win; No-Go-to-Win; Decoy) and action type
(Go; No-Go). Task condition was manipulated either between (Experiment 1) or within (Experiment 2) participants. Across both experiments, the Low
Control Decoy only appeared in the Low Control condition, and the High Control Decoy only appeared in the High Control condition.
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Fig. 3 Information processing architecture. Pavlovian and instrumental
prediction and valuation combine into a single value. This integrated value
includes a weighting parameter (w) that represents the evidence for the
uncontrollable environment (i.e., in favor of the Pavlovian predictor). See
Methods for technical details.

Results

Behavior and modeling. We describe the two experiments
together because they are very similar in structure (Fig. 2).
Experiment 1 manipulated reward controllability between parti-
cipants, whereas Experiment 2 manipulated it within participants.

To investigate the extent to which participants relied on
Pavlovian control, we measured their Go bias, defined as the
difference in accuracy on Go-to-Win and No-Go-to-Win trials
(see Supplementary Fig. 1 for the disaggregated data). Under
purely instrumental control, the Go bias should be 0; hence values
greater then 0 indicate the influence of Pavlovian control.

We developed two models of behavior on this task (see
Methods for details). Both models consist of two sub-compo-
nents; a Pavlovian learning system and an instrumental learning
system (Fig. 3). The Pavlovian system acquires reward expecta-
tions for each stimulus, and converts these expectations into
action values by promoting Go responses to cues in proportion to
their expected reward. The instrumental system acquires reward
expectations for each stimulus-action combination, and converts
these into action values by promoting Go responses to stimuli in
proportion to their expected reward for Go relative to No-Go.
The learning rules for both systems are the same.

The Pavlovian and instrumental values are integrated linearly
according to a weighting parameter. The two models differ in
terms of how the weighting parameter changes as a function of
experience. In the fixed model, the weighting parameter is held
constant, treated as a free parameter that we fit to behavior. In the
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Fig. 4 Weight dynamics for one participant. The adaptive model
demonstrates a greater reliance on the Pavlovian system in the Low Control
condition compared to the High Control condition.

adaptive model, the weighting parameter is updated after each
trial based on the relative predictive ability of each system. Thus,
the weight is not a free parameter in the adaptive model, but is
instead determined endogenously by each participant’s experi-
ence in the task.

Figure 4 shows the time series of the adaptive Pavlovian weight
for the model fitted to one participant, demonstrating the
prediction that low control should tend to produce a higher
Pavlovian weight (w), which will in turn cause a stronger Go bias.

Consistent with the model predictions, participants across
both experiments showed an increased Go bias in the Low
Control (LC) condition compared to the High Control (HC)
condition (Experiment 1: #(183)=2.06, p<0.05, d=0.31;
Experiment 2: #(128) =2.06, p <0.05, d =0.18; by two-sample
t-test; Fig. 5). The adaptive model provided a quantitatively
superior account relative to the fixed model, as assessed by
random effects Bayesian model comparison?!. Specifically, we
calculated the protected exceedance probability (PXP), the
probability that a particular model is more frequent in the
population than all other models under consideration, taking
into account the possibility that some differences in model
evidence are due to chance. For both experiments, the PXP
favoring the adaptive model was >0.99.
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Fig. 5 Go bias for low and high control conditions across experiments. a Go bias for low and high control conditions in Experiment 1 (left) and Experiment
2 (right). b The adaptive model captures within-participant variability in Go bias, plotted as a function of Pavlovian weight (w) quantile for Experiment 1
(left) and Experiment 2 (right). Error bars show standard error of the mean.

To verify the quantitative accuracy of the adaptive model, we
plotted the Go bias as a function of weight quantile (Fig. 5),
finding a close fit between model and data (for both experiments,
the t-test comparing the Go bias for the lowest and highest
quantiles was significant; Experiment 1: #(177) =12.30, p<
0.0001, d=0.92; Experiment 2: #(54)=6.16, p<0.0001, d=
0.83), apart from a slight deviation in Experiment 2 for the lowest
weight quantiles. Importantly, the quantiles were computed
within participants, demonstrating that the model can capture
variations in Pavlovian control over the course of a single
experimental session.

The timeseries of weights generated by the adaptive model is,
on average, correlated with the parameter estimates obtained
from fitting the fixed model (Experiment 1: r = 0.51, p <0.0001;
Experiment 2: r = 0.63, p <0.0001; by correlation). This demon-
strates that the adaptive model’s average behavior produces
behavior similar to that predicted by earlier models using fixed
weights!?20 but with the weight determined endogenously rather
than fit as a free parameter.

We also tested the prediction that the Go bias should diminish
over the course of training, and eventually disappear, as can be
seen in the simulations (Fig. 4). Consistent with this prediction,
the Go bias in both experiments declined over the course of trials,
roughly exponentially fast (Fig. 6). Specifically, we regressed the
Go bias against the log-transformed trial number and then
carried out t-tests on the regression coefficient, finding a
significant negative effect for Experiment 1 (#(184) =2.93, p<
0.005, d = 0.22) and Experiment 2 (#(128) = 5.55, p <0.0001, d =
0.49).

Analysis of bias and variance. We also examined the effect of
controllability on the bias-variance trade-off (Fig. 7). Because
controllability favors the more complex instrumental model, we
hypothesized that the HC condition would produce lower bias

and higher variance (note that this bias should not be confused
with the Pavlovian Go bias; see Supplementary Fig. 3 for model
simulations of bias and variance). This prediction was partially
confirmed in both Experiment 1 (bias: #(183) =2.06, p <0.05,
d = 0.31; variance: #(183) =1.69, p=0.09, d = 0.25) and Experi-
ment 2 (bias: #(128) = 2.07, p < 0.05, d = 0.18; variance: #(128) =
2.37, p<0.05, d = 0.21; by t-test).

Discussion

Taken together, our experimental data provide evidence con-
sistent with a Bayesian model averaging theory of Pavlovian-
instrumental arbitration. Our key finding was that the Pavlovian
Go bias was stronger under conditions of low reward controll-
ability, consistent with our model’s prediction. Analyses in terms
of the bias-variance trade-off supported the same conclusion: low
controllability favors the simpler Pavlovian predictor, leading to
high bias and low variance.

Our results cannot be explained by a non-specific Go bias,
whereby Go responses are rewarded more in the High control
condition, inducing an overall tendency to produce Go responses.
This would in fact predict the opposite effect (stronger Go bias
under high reward controllability), contrary to our experimental
findings. Even stronger evidence against a non-specific Go bias
would be provided by a version of the experiment in which par-
ticipants must make Go/No-Go responses to avoid punishment.

The idea that Pavlovian-instrumental interactions are governed
by probabilistic inference joins a number of related ideas in the
theories of reinforcement learning. Most relevantly, Daw and
colleagues suggested that arbitration between model-based and
model-free control was determined by Bayesian arbitration!!, but
they did not address Pavlovian-instrumental interactions. A
number of earlier theories argued that certain reinforcement
learning behaviors could be understood as arising from a model
comparison process22~2°, However, to our knowledge, ours is the
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Fig. 6 Go bias as a function of trial. Go-bias across trials for a Experiment 1 and b Experiment 2. The data plots have been smoothed with a 5-trial moving
average. Error bars show standard error of the mean.
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Fig. 7 Bias and variance across conditions and experiments. Bias and variance of choice behavior for a Experiment 1 and b Experiment 2. Error bars show
standard error of the mean.
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first account that directly addresses Pavlovian-instrumental
interactions in terms of model comparison/averaging.

Recent work by Swart and colleagues complicates this picture
by showing that the Go bias is at least partially accounted for by
instrumental learning biases2®. In particular, participants in their
study tended to learn more quickly from rewarded Go trials
compared to rewarded No-Go trials, whereas they learned more
slowly from punished No-Go trials compared to punished Go
trials. This instrumental learning bias causes Go responses to
appear more attractive when correct actions yield reward, and less
attractive when correct actions yield avoidance of punishment.
This phenomenon is not accounted for by our modeling
framework.

Our results suggest several directions for future work. First, we
have only studied the dynamics of the Pavlovian go bias for
rewards; earlier work suggests that we should find a symmetric
pattern for punishments, with a stronger No-Go bias under low
controllability®?”. Second, neuroimaging could be used to iden-
tify the neural correlates of arbitration. If our account is correct,
we would expect to see a signal in the brain that encodes the
dynamically changing weight parameter. Third, an open theore-
tical task will be to generalize the model to explain other forms of
Pavlovian-instrumental interactions, such as negative auto-
maintenance and Pavlovian-instrumental transfer.

More broadly, our findings are consistent with the idea that
agency is one factor that can mediate the trade-off between
learning processes, which has important implications for under-
standing psychopathology. For example, many studies in both
humans and animals have shown that controllability (or lack
thereof) influences future instrumental responding. Learned
helplessness, where the experience of uncontrollable punishments
leads to diminished instrumental learning (for example, failure to
learn to escape an electric shock?8, is hypothesized to be a model
of, and has been linked to, symptoms of depression and anxiety2°.
Although the learned helplessness literature has focused on
uncontrollable punishments, there is also evidence that indivi-
duals with depression are less likely to experience illusions of
control with rewards3). The idea that inferences about controll-
ability underlie learned helplessness has been incorporated into
formal Bayesian models that share some properties with the
model proposed in this paper3!. In addition, recent work has
shown that outcome controllability manipulations can induce
learned helplessness in humans, and also enhance Pavlovian
biases in a reinforcement learning context32.

In conclusion, we have shown how the framework of Bayesian
model averaging can shed light on the cognitive mechanisms
underlying Pavlovian misbehavior. Although the simple model
studied in this paper is not a comprehensive theory of Pavlovian-
instrumental interactions, it points towards one mechanism that
is likely to play an important role in future, more comprehensive
theories.

Methods

Participants. We recruited two independent samples of adults from Amazon
Mechanical Turk (Experiment 1: N =271, Experiment 2: N = 183). The sample
sizes were chosen in order to exceed sample sizes from previous, similar work>:19,
Participants for Experiment 2 were recruited from an existing pool of Amazon
Mechanical Turk workers. These workers have completed previous experiments for
our lab and expressed interest in being re-contacted for additional study oppor-
tunities. Participants were excluded for inaccuracy. Specifically, if participants
made the incorrect action (either a button press for a No-Go trial, or the absence of
a button press for a Go trial) for 250% of all trials, they were excluded from
analyses. We also excluded any participants that performed <30% on any one
condition. This left a total of 185 accurate participants for Experiment 1 and 129
accurate participants for Experiment 2 (see Supplementary Fig. 2 for experimental
results without participant exclusions). The Harvard University Committee on the
Use of Humans Subjects approved the experimental procedures and participants
provided informed consent prior to beginning the study.

Procedure. Participants completed a modified Go/No-Go paradigm where they
made a decision on each trial to either take or avoid an action in response to a
stimulus to receive reward®20, Participants viewed a single colored square on
each trial and had to learn the appropriate response for each square. There was
a different correct response and reward probability combination for each shape:
One square was a Go stimulus, where a spacebar press was rewarded 75% of
the time, one square was a No-Go stimulus, where the absence of a button press
was rewarded 75% of the time, and the third square was a Decoy stimulus,
where a spacebar press was rewarded with a particular probability, which was
manipulated based on experimental condition. In the Low control (LC) con-
dition, the Decoy was rewarded 50% of the time, and in the High control (HC)
condition—the Decoy was rewarded 80% of the time. Our task differed from
previous Go/No-Go tasks in that it did not include any punishment conditions.
Rewarded outcomes were represented with dollar signs, and unrewarded out-
comes were represented with a neutral (white rectangle) cue. Participants were
told that they would receive a small amount of real bonus money for each
reward outcome, and their total bonus was summed and disclosed at the end of
the experiment.

In Experiment 1, participants were randomly assigned to one decoy condition
(LC or HC), so that each participant was exposed to three different stimuli (Go-to-
Win, No-Go-to-Win, and either LC or HC). The experiment consisted of 120 trials,
40 trials for each type of stimulus, randomly interleaved. In Experiment 2, each
participant experienced both decoy conditions in separate blocks, the order of
which was randomized. The experiment consisted of 240 trials, 120 for each block,
with 40 trials for each stimulus within a block. The experiment was coded in
jsPsych, version 6.0.533.

Computational model. On each trial of the task, the participant must take an
action (a) in response to a stimulus (s) in order to receive a reward (r). The
problem facing the participant is to determine whether they are acting in an
environment where outcomes are controllable (instrumental) or uncontrollable
(Pavlovian).

Each model has a set of parameters 6 that must be learned. The parameters for
the uncontrollable model are indexed only by the stimulus (6,), whereas the
parameters for the controllable model are indexed by both the stimulus and action
(6,,). We will walk through the learning equations for the uncontrollable model,
but the idea is essentially the same for the controllable model (see Supplementary
Methods for complete derivations).

The posterior over parameters given data D (the history of stimuli, actions and
rewards) and environment m € {controllable, uncontrollable} is stipulated by
Bayes’ rule:

P(6]D, m) o P(D|6, m)P(6]m) (1)

where P(D|6, m) is the likelihood of the data given hypothetical parameter values 6,
and P(6/m) is the prior probability of those parameter values. In the context of our
task, where rewards are binary, 6, = [E[r|s] corresponds to the mean of a stimulus-
specific Bernoulli distribution. When P(6,) is a Beta (6,2, (1 — 6,) L) distribution,

the posterior mean és (which is also the posterior predictive mean for reward) is
initialized to 6, and updated according to:

AB, =716 @)

s

where & is the reward prediction error (r — 6,), and 5, is the learning rate with
counter #; initialized to #o and incremented by 1 every time stimulus s is
encountered (in the controllable model, # is indexed by both s and a). Intuitively, 6,
corresponds to the prior mean (the reward expectation before any observations),
and 7, corresponds to the prior confidence (how much deviation from the prior
mean the agent expects).

Because the true environment is unknown, it must be inferred, which can be
done using another application of Bayes’ rule:

P(m[D) o< P(DJm)P(m) ®)

1

where
P(D|m) — / P(D|0, m)P(6)d0 (4)

is the marginal likelihood. The posterior can be updated in closed form. For clarity
we adopt a log-odds convention, with the prior log-odds given by:

L -1 P(uncontrollable) 5)
0 =708 P(controllable)
The posterior log odds are initialized to L, and updated according to:
AL:rlog?—s—t—(l—r)logl_?s (6)

sa sa
Finally, we need to specify how each model maps reward predictions onto
action values. For the instrumental model, we assume that action values simply
correspond to the expected reward for a particular state-action pair: V, (s, a) = 0.
For the Pavlovian model, we assume that the action value is equal to Vp(s, a) = 0
for a =No-Go and V(s,a) = Q for a = Go. This assumption follows from the
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influential idea that Pavlovian reward expectations invigorate action®. To combine
the two action values into a single integrated value for action selection, we weight
each model’s value by its corresponding posterior probability:
V(s,a) = wVp(s,a) + (1 = w)Vi(s,a), 7)

where

1
14et
is the posterior probability of the uncontrollable environment.

To allow for stochasticity of behavior, we model the agent’s action selection

according to a softmax, where f3 is an inverse temperature parameter controlling
the level of choice stochasticity:

w = P(m = uncontrollable|D) =

®)

exp[BV (s, a)] )
> exp[BV (s, )]

The model outlined above, which we will refer to as the adaptive model, updates
the weighting parameter from trial-to-trial based on the relative predictive accuracy
between the two controllers. We also fit a comparison model, which instead fits the
weighting term as a free parameter. We refer to this comparison model as the fixed
model. The models share the same underlying information processing architecture
(Fig. 3) but differ in whether w is set exogenously (in the case of the fixed model) or
endogenously (in the case of the adaptive model).

We fit each model’s free parameters using maximum likelihood estimation. The
adaptive model had five free parameters: the inverse temperature 3, and the
parameters of the prior (6o, #o) for each environment (High or Low Control). We
also considered a model in which L, was fit as a free parameter, but model
comparison indicated that fixing L, = 0.5 had greater support in our data sets. The
fixed model had six free parameters: the same five as the adaptive model, plus the
weighting parameter w. Average parameter estimates are reported in
Supplementary Table 1.

P(as) =

Bias-variance analysis. To assess how controllability affects the bias-variance
trade-off, we calculated these quantities for each participant as follows:

T
bias = %Z I[a, = Go] — I[a} = Go] (10)
=1
1
variance = TZ (Tla, = Go] — &) (11)
t=1

where g, is the chosen action on trial ¢, a; is the optimal action,

a, =% thl I[a, = Go), T is the number of trials (note that the optimal action is
not defined for the Low control decoy), and [[-] = 1 when its argument is true, and
0 otherwise.

Intuitively, this bias measures how much a participant’s actions deviate from
the optimal policy. A bias of 0 indicates that the participant always follows the
optimal policy. Positive values indicate that the participant is responding Go more
frequently than optimal. The variance measures how much a participant’s actions
deviate from their average policy. A variance of 0 indicates that the participant
always gives the same response.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at: https://github.com/
sjgershm/GoNogo-control.

Code availability

Code to produce computational model results and plots is available at: https://github.
com/sjgershm/GoNogo-control and code for the experiment is available at: https://
github.com/hayleydorfman/pavlovian-instrumental-arbitration.
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