
Supplementary Materials 
 

Computational Models. 
 

Model Fitting. We used a softmax function to model choice probabilities, including a response 

stochasticity (inverse temperature) parameter and a “stickiness” parameter to capture choice 

autocorrelation (Gershman, Pesaran, & Daw, 2009). The Bayesian models were fit using 

maximum a posteriori estimation with empirical priors based on previous research (Gershman, 

2016). Specifically, the prior distribution for the inverse temperature was β ~ Gamma(4.82, 

0.88), and for the stickiness parameter was ρ ~ 𝒩(0.15, 1.42).  

 

 

Model Comparison. We used random-effects Bayesian model selection (Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009) to compare models. This procedure treats each participant 

as a random draw from a population-level distribution over models, which it estimates from the 

sample of model evidence values for each model. We used the Laplace approximation of the log 

marginal likelihood to obtain the model evidence values. For our model comparison metric, we 

report the “protected exceedance probability” (PXP), the probability that a particular model is 

more frequent in the population than all other models under consideration. This is differentiated 

from an “exceedance probability” in that it considers the possibility that some differences in 

model evidence are due to chance. 

 

 

Experiment 1:  

 
Descriptive Model. In order to characterize learning rate asymmetries without committing to the 

assumptions of the Bayesian model, we fit a “descriptive” reinforcement learning model which 

updates reward probability estimates according to 𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡(𝑟𝑡 − 𝜃𝑡), with separate 

learning rates for each combination of positive/negative outcome and the three experimental 

conditions (benevolent, adversarial, random). 

 

Bayesian Reinforcement Learning Model. This model considers a problem in which a 

decision-maker must choose an option 𝑐 ∈ {1, … , 𝐶} based on experienced rewards. Each option 

is associated with an intrinsic reward distribution, but a latent cause can intervene (denoted 𝑧 =
1) to generate a different reward distribution. With probability 𝑃(𝑧 = 0), the decision-maker 

receives a reward from the intrinsic distribution, 𝑃(𝑟|𝑐, 𝑧 = 0), or with probability 𝑃(𝑧 = 1), she 

receives a reward determined by the latent cause, 𝑃(𝑟|𝑧 = 1). The marginal distribution over 

reward given the decision maker’s choice is thus 

 

(1)  

𝑃(𝑟|𝑐) = 𝑃(𝑟|𝑐, 𝑧 = 0)𝑃(𝑧 = 0) + 𝑃(𝑟|𝑧 = 1)𝑃(𝑟|𝑧 = 1). 
 



In our setting, rewards are binary and distributed according to a Bernoulli distribution for each 

option, 𝐵𝑒𝑟𝑛(𝜃𝑐). Thus, absent intervention, a reward of 1 is drawn with probability 𝜃𝑐, and a 

reward of 0 is drawn with probability 1 − 𝜃𝑐. 

 

For our experimental paradigm, we define the latent cause as another agent (the “latent agent”) 

that can allot outcomes for the decision maker. We define 3 different latent agent types: 

• Benevolent latent agent: produces a reward regardless of the decision maker’s choice. 

Formally, 𝑃(𝑟 = 1|𝑧 = 1) = 1. 

• Adversarial latent agent: produces no reward regardless of the decision maker’s choice. 

Formally, 𝑃(𝑟 = 0|𝑧 = 1) = 1. 

• Random latent agent: produces reward with probability 0.5 regardless of the decision 

maker’s choice. Formally, 𝑃(𝑟 = 1|𝑧 = 1) = 1/2. 

The decision maker does not know the true reward probabilities of her options. She has a prior 

belief that the unknown parameters 𝜃𝑐 are independently distributed according to 𝐵𝑒𝑡𝑎(𝑎, 𝑏), 

which are then updated from experience. The Beta distribution parameters can be fit to choice 

data though for simplicity we assume both are equal to 1 in the estimation procedure, 

corresponding to a uniform distribution. 

After choosing an action 𝑐𝑡 and observing reward 𝑟𝑡 on trial 𝑡, the decision maker updates her 

estimate of the reward probability 𝜃𝑐 according to a reinforcement learning equation that 

incorporates inference over latent causes. With a Beta prior and a Bernoulli reward distribution, 

the Bayesian update rule takes the form 𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡(𝑟𝑡 − 𝜃𝑡), where 𝛼𝑡 is a parameter 

representing the learning rate that scales the reward prediction error. This learning rate is based 

rationally on beliefs about the outcome’s two possible sources: the action’s intrinsic reward and 

the latent agent’s intervention. These beliefs jointly determine the extent to which the participant 

attributes feedback to each source. The learning rate is given by 

 

(2) 

𝛼𝑡 =
𝑃(𝑧𝑡 = 0|𝑟𝑡 , 𝑐𝑡)

𝑁𝑡
𝑐 + 𝑎 + 𝑏

 

 

where 𝑁𝑡
𝑐 ≈  ∑ 𝑃(𝑧𝜏 = 0|𝑟𝜏, 𝑐𝜏)𝜏∈{1,…,𝑡|𝑐𝜏=𝑐}  is the sum of past beliefs about latent agent non-

intervention on trials when the same option was chosen. The denominator reflects the magnitude 

of evidence about the intrinsic reward probability accumulated up to trial 𝑡 (it is approximate 

because we assume for tractability that evidence provided by past feedback is not revised 

according to later information). 

 

The learning rate’s numerator is central to our present analysis: it encodes the degree to which 

feedback should be attributed to the intrinsic reward distribution rather than to the latent agent, 

and modulates the degree of learning based on whether feedback was positive or negative. The 

value of 𝑃(𝑧 = 0|𝑟, 𝑐) is stipulated by Bayes’ rule: 

 



(3) 

𝑃(𝑧|𝑟, 𝑐) =  
𝑃(𝑟|𝑧, 𝑐)𝑃(𝑧)

∑ 𝑃(𝑟|𝑧′, 𝑐)𝑃(𝑧′)𝑧′

. 

 

This yields the following expressions which vary based on the combination of feedback and 

agent type: 

 

Benevolent agent (negative feedback): 

𝑃(𝑧 = 0|𝑟 = 0, 𝑐) = 1 

Benevolent agent (positive feedback): 

𝑃(𝑧 = 0|𝑟 = 1, 𝑐) =
𝜃𝑐𝑃(𝑧 = 0)

𝜃𝑐𝑃(𝑧 = 0) + 𝑃(𝑧 = 1)
 

Adversarial agent (negative feedback): 

𝑃(𝑧 = 0|𝑟 = 0, 𝑐) =
(1 − 𝜃𝑐)𝑃(𝑧 = 0)

(1 − 𝜃𝑐)𝑃(𝑧 = 0) + 𝑃(𝑧 = 1)
 

Adversarial agent (positive feedback): 

𝑃(𝑧 = 0|𝑟 = 1, 𝑐) = 1 

Random agent (negative feedback): 

𝑃(𝑧 = 0|𝑟 = 0, 𝑐) =
(1 − 𝜃𝑐)𝑃(𝑧 = 0)

(1 − 𝜃𝑐)𝑃(𝑧 = 0) + 𝑃(𝑧 = 1)/2
 

Random agent (positive feedback): 

𝑃(𝑧 = 0|𝑟 = 1, 𝑐) =
𝜃𝑐𝑃(𝑧 = 0)

𝜃𝑐𝑃(𝑧 = 0) + 𝑃(𝑧 = 1)/2
 

 

where the probability of intervention 𝑃(𝑧 = 1) is known. Subtly, the decision maker’s inference 

about the latent agent’s intervention depends on her existing estimate of 𝜃𝑐. 

 

The learning rate exhibits asymmetries depending on whether the latent agent tends to produce 

positive or negative outcomes. For example, when the agent is adversarial, positive outcomes can 

only come from the action itself, whereas negative outcomes are partly attributable to the 

external agent. Consequently, negative outcomes are less informative about the action’s reward 

probability, corresponding to a lower learning rate. 

 

 Parameter Prior Distribution Bounds 𝜇 (mean) 95% CI 

Bayesian RL 
Model 

 

𝛽 (inverse 
temperature) 

 

∼ Gamma(4.82, 0.88) 

 

[0.001, 20] 4.32 [3.71, 4.48] 

 

ρ (stickiness) 
 

~ 𝒩(0.15, 1.42) [-5, 5] 1.51 [1.31, 1.72] 

Fig. S1. 

Computational model parameters for the best-fitting model in Experiment 1. 



 

 

Experiment 2: 
 

In Experiment 2, we consider the case where the decision-maker does not know the probability 

of intervention. We explored three possible models for this scenario: (1) the “adaptive Bayesian” 

model, which estimates the intervention probability directly, (2) the “fixed Bayesian” model, 

which treats the intervention probability as a free parameter, and (3) the “empirical Bayesian” 

model, which derives the intervention probability by averaging the participants’ binary 

intervention judgments. The empirical Bayesian model was the best fitting model for our data 

across two independent samples (pooled and unpooled), with a PXP > 0.999. 

 

Adaptive Bayesian Reinforcement Learning Model. For ease of comprehension, we define a 

new variable, 𝜔, to represent the decision maker’s estimate of the latent agent’s intervention 

probability, 𝑃(𝑧𝑡 = 1). This can be approximated by the average of past beliefs about 

intervention, implying that the decision maker updates 𝜔 on each trial using: 

 

 (1) 

𝜔𝑡+1 =  𝜔𝑡 +  
1

𝑡 + 𝑎 + 𝑏
 (𝑃(𝑧𝑡 = 1|𝑟𝑡 , 𝑐𝑡) −  𝜔𝑡) 

 
 

The 𝜔 update rule can be coupled with the 𝜃 update rule above by plugging 𝜔𝑡+1 into instances 

of 𝑃(𝑧𝑡 = 1). 

 

Fixed Bayesian Reinforcement Learning Model. Here, we fit the estimate of the latent agent’s 

intervention probability, 𝑃(𝑧𝑡 = 1), as a free parameter for each participant. This is integrated 

into the Bayesian Reinforcement Learning Model described above. 

 

Empirical Bayesian Reinforcement Learning Model. This model calculates the decision-

maker’s average intervention judgment and utilizes this value for the estimate of the intervention 

probability 𝑃(𝑧𝑡 = 1), providing an individualized estimate of intervention for each participant. 

This is integrated into the Bayesian Reinforcement Learning Model described above. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Parameter Prior Distribution Bounds 𝜇 (mean) 95% CI 

Empirical 
Bayesian RL 

Model 
 

𝛽 (inverse 
temperature) 

 

∼ Gamma(4.82, 0.88) 

 

[0.001, 20] 4.10 [3.66, 4.05] 

 
Stickiness 

 
~ 𝒩(0.15, 1.42) [-5, 5] 1.22 [1.12, 1.32] 

 

Table. S1: Computational model parameters for the best-fitting model (“empirical Bayesian”) in Experiment 

2. Prior Distribution: This model was fit using a maximum a posteriori estimation with empirical priors based on 

previous research (Gershman, 2016). Bounds: Limits set for the optimization procedure for each parameter. Mean: 

Mean of each parameter across all participants. CI: 95% confidence intervals for the parameters across all 

participants. 

 

 
Behavioral Analyses. 
 

Win-stay Lose-shift. In order to explore participants’ choices in a “model-free” way, we 

visualized their win-stay lose-shift behavior. 

 

 
 
Fig. S3. 

Win-stay Lose-shift. (a) Experiment 1 and (b) Experiment 2. Error bars represent across-subject standard error of 

the mean (SEM). 

 

 

Task Performance. 

 
Performance data for choice behavior in the task is reported here for both Experiment 1 (N = 70) 

and Experiment 2 (N = 255). 



 
Experiment 1. The mean proportion of trials where participants chose the more rewarding option 

was 0.794, with a standard deviation of 0.088.  

 

Experiment 2. The mean proportion of trials where participants chose the more rewarding option 

was 0.785, with a standard deviation of 0.095.  
 

 



Fig. S4. Percent optimal choice by trial and condition for Experiment 1 (left) and Experiment 2 (right).  

 
 

 

 

Individual Differences Analyses. 
 

Initial Experiment. 
 

One of the broader questions motivating this research is how the environment shapes learning 

rate asymmetries. We addressed this question by performing an exploratory analysis where we 

investigated whether individuals’ prior expectations influenced their beliefs about control. As 

proxies for prior expectations, we measured trait optimism and childhood socioeconomic status, 

under the assumption that these measures reflect ingrained beliefs about the prevalence of 

positive outcomes in the environment. 

  

Method 
 

Participants. 110 participants (49 female, 56 male, 5 unreported) from Amazon Mechanical 

Turk completed the two-alternative forced choice behavioral task outlined in the main text 

(Experiment 2) and self-report measures to assess trait optimism and socioeconomic status 

(SES). Participants completed some of the self-report measures during the same session as the 

behavioral task and the remainder of the measures during a separate session to avoid fatigue. A 

larger sample size was chosen compared to Experiment 1 in order to ensure that the sample 

would be sufficiently large after excluding for inaccuracy and incomplete responses. Ninety-five 

individuals completed some or all of the self-report measures but were excluded if they did not 

complete all of the self-report measures or did not meet the accuracy criterion in the behavioral 

task. Five additional participants were excluded from zip code analyses because they chose not 

to provide zip code information, entered an invalid code, or because median income data was not 

available for the location they entered. Self-report measure analyses for the Life Orientation Test 

– Revised (LOT-R) results included data from 89 participants and results from the zip code 

analyses included data for 84 participants. Participants gave informed consent, and the Harvard 

Committee on the Use of Human Subjects approved the experiment. 

 

Self-Report Measures. Participants completed self-report measures in addition to the behavioral 

task, either directly after the task or in a separate online session. Participants completed the Life 

Orientation Test – Revised (LOT-R) (Scheier, Carver, & Bridges, 1994) to assess trait 

optimism/pessimism and the MacArthur Subjective Socioeconomic Status scale (Singh-Manoux, 

Marmot, & Adler, 2005). This questionnaire was revised to also collect objective measures of 

socioeconomic status including childhood zip code, current zip code, and current yearly income 

(see Supplemental Materials). The sample completed additional measures that will not be 

reported here. Given our specific hypotheses about trait optimism and environmental markers of 

optimism and pessimism, we focus on LOT-R and SES results. 

 

Results 



 

In order to investigate whether optimistic and pessimistic biases are related to variability in 

beliefs about intervention, we tested the association between optimism scores and participants’ 

mean belief in latent agent intervention (Fig. 5). We used a Spearman’s rank-order correlation 

test due to the fact that LOT-R scores were optimistically skewed (range: 0-24; mean: 15.01; 

median: 17; standard deviation: 7.26). We found a significant correlation between belief in the 

latent agent across all conditions for negative feedback (rs = 0.256, p = 0.019). Since benevolent 

agents cannot cause negative outcomes, we wanted to confirm that these results were indeed due 

to appropriate attributions in the adversarial and neutral conditions. We found a significant 

association between beliefs in the adversarial condition and optimism, (rs = 0.224, p = 0.034), as 

well as for the neutral condition, (rs = 0.237, p = 0.025), but not for the benevolent condition (rs 

= -0.021, p = 0.840). A Fisher’s r-to-z transformation revealed significant differences between 

both the adversarial and benevolent correlation coefficients (z = 2.190, p = 0.029) and the neutral 

and benevolent correlation coefficients (z = 2.477, p = 0.013). These results suggest that 

optimists are more likely to blame bad outcomes on external forces. It is interesting to note that 

we did not find any relationship between attribution of positive outcomes and trait optimism (rs = 

-0.045, p = 0.679). 

To explore a possible environmental source of asymmetries, we tested whether childhood 

socioeconomic status contributes to beliefs about agency. We used median income data from the 

most recent available data, the 2006-2010 American Community Survey (ACS) compiled by the 

University of Michigan Population Studies Center. We found that median income of 

participants’ childhood zip code (range: $16,346 - $135,253 USD) was positively correlated with 

belief in the hidden agent for negative outcomes collapsed across the adversarial and neutral 

conditions (r = 0.259, p = 0.019) (Fig. 6). However, consistent with our findings on trait 

optimism, there was no significant relationship between agency beliefs about positive outcomes 

and childhood neighborhood income (rs = -0.089, p = 0.388). A Fisher’s r-to-z transformation 

confirmed that the correlations for negative and positive outcomes were significantly different (z 

= 2.618, p = 0.009). 

 

Fig. S4. 



Optimism and beliefs about agency. LOT-R correlates with beliefs about latent agent intervention for (a) negative, 

but not (b) positive feedback. Negative feedback trials were included from adversarial and neutral conditions, and 

positive feedback trials were taken from the benevolent and neutral conditions.  

 

 

Fig. S5. 

Childhood environment and beliefs about agency. Median income of the neighborhood where participants spent 

their childhood correlates with beliefs about latent agent intervention for (a) negative, but not (b) positive feedback. 

Negative feedback trials were combined across adversarial and neutral conditions, and positive feedback trials were 

pulled from benevolent and neutral conditions. 

 

 

Pre-registered Replication. 

 
Due to small effect sizes and concerns about reproducibility, we attempted a pre-registered 

replication of the correlational individual differences analyses reported above. All procedures 

were identical to the original experiment. The replication was registered via the Open Science 

Framework: https://osf.io/3htpj/. 

 

Method 
 

Participants. 156 participants (74 female, 75 male, 8 other/unreported) from Amazon 

Mechanical Turk completed the two-alternative forced choice behavioral task outlined in the 

main text (Experiment 2 and Initial Experiment above) and self-report measures to assess trait 

optimism and socioeconomic status (SES). The number of participants was determined using 

power analyses performed in RStudio (using package ‘pwr’). In order to obtain 90% power, we 

determined that we would need 155 participants for the LOT-R correlation and 151 subjects for 

the SES correlation. We collected data for a total of 196 participants on Amazon Mechanical 

Turk in order to include 156 usable participants. Exclusion criteria were identical to all other 

experiments reported here: participants were excluded if they did not get a comprehension 



question correct, did not choose the higher-rewarded option for > 60% of all trials, did not have 

usable zip code data, or encountered technical difficulties submitting their full data set. 

 
Self-Report Measures. Participants completed self-report measures in addition to the behavioral 

task, directly after the task. Participants completed the Life Orientation Test – Revised (LOT-R) 

(Scheier et al., 1994) to assess trait optimism/pessimism and the MacArthur Subjective 

Socioeconomic Status scale (Singh-Manoux et al., 2005). This questionnaire was revised to also 

collect objective measures of socioeconomic status including childhood zip code, current zip 

code, and current yearly income (see Supplemental Materials). The sample completed additional 

measures that will not be reported here. Given our desire to replicate our findings about trait 

optimism and environmental markers of optimism and pessimism, we focus only on LOT-R and 

SES results. 

 

 

Results 
 
We were unable to fully replicate all of our results from the initial experiment reported above. 

While some of our results did replicate (see below), we do not feel confident enough to draw any 

strong conclusions. Instead, we report the results here without further comment. 

 
1. We find a replication of the correlation between belief in the latent agent across all 

conditions for negative feedback and LOT-R score (rs = 0.163, p = 0.043). 

2. We find no replication of the correlation between beliefs in the adversarial condition and 

LOT-R score (rs = 0.138, p = 0.085). 

3. We find no replication of the correlation between beliefs in the latent agent in the neutral 

condition and LOT-R score (rs = 0.069, p = 0.392) 

4. We find no replication of the non-correlation between beliefs in the latent agent in the 

benevolent condition and LOT-R score (rs = 0.196, p = 0.014).  

5. We find no replication of the non-correlation between attribution of positive outcomes 

and LOT-R score (rs = 0.206, p = 0.001). 

6. We find no replication of the significant correlation between median income of 

participants’ childhood zip code and belief in the hidden agent for negative outcomes 

collapsed across the adversarial and neutral conditions (rs = 0.104, p = 0.198) 

7. We find a replication of the non-correlation between agency beliefs about positive 

outcomes and childhood neighborhood income (rs = 0.068, p = 0.398). 
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