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People are motivated to maximize rewards and mini-
mize punishments, but when updating their beliefs, 
they often weigh good and bad news differently. The 
nature of this differential weighting remains puzzling. 
In some cases, animals and humans attend more to bad 
events and learn more rapidly from punishments than 
from rewards (Baumeister, Bratslavsky, Finkenauer, & 
Vohs, 2001; Taylor, 1991). Similarly, some studies of 
reinforcement learning have found that learning rates 
are higher for negative than for positive prediction 
errors (Christakou et al., 2013; Gershman, 2015a; Niv, 
Edlund, Dayan, & O’Doherty, 2012). However, other 
work has demonstrated the opposite pattern of results—
greater learning for positive outcomes, not only in 
reinforcement-learning tasks (Kuzmanovic, Jefferson, & 
Vogeley, 2016; Lefebvre, Lebreton, Meyniel, Bourgeois-
Gironde, & Palminteri, 2017; Moutsiana, Charpentier, 
Garrett, Cohen, & Sharot, 2015), but also in procedural-
learning (Wachter, Lungu, Liu, Willingham, & Ashe, 2009) 
and declarative-learning tasks (Eil & Rao, 2011; Sharot, 
Korn, & Dolan, 2011).

Here, we explored the hypothesis that the direction 
of valence-dependent learning asymmetries depends 
on beliefs about the causal structure of the environ-
ment. To provide some insight, we borrow an example 
from Abramson, Seligman, and Teasdale (1978): Con-
sider a group of researchers who receive a rejection for 
a manuscript submission. The researchers’ inferences 
about the cause of that feedback will influence whether 
they modify the paper or appeal the decision. If the 
researchers believe that their submission was rejected 
because the paper was bad, they will revise the paper 
and take this new information into consideration for 
future submissions. However, if they believe that the 
rejection was due to the opinion of an unfair reviewer, 
they will be less likely to update their beliefs about the 
quality of the paper. In other words, they will explain 
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away the rejection, attributing it to a hidden cause (the 
reviewer’s caustic temperament) rather than to their 
own ability.

Abramson et al. (1978) argued that “failure means 
more than merely the occurrence of a bad outcome” 
(p. 55). Rather, attribution of negative outcomes to one-
self is what constitutes failure. According to learned-
helplessness theory, individuals with an optimistic 
explanatory style tend to attribute negative events to 
external forces, whereas those with a pessimistic 
explanatory style believe that the causes of negative 
events are internal. Given this view, optimistic and pes-
simistic cognitive biases might arise from both (a) dif-
fering experiences of reinforcements and (b) beliefs 
about the causes of those reinforcements. In other 
words, both the availability of rewards and punishments 
in the environment and the degree to which these con-
sequences are attributed to oneself determine to what 
extent positive and negative outcomes influence 
learning.

Valence-dependent learning asymmetries are impor-
tant because they may give rise to systematic biases with 
real-world consequences. On the one hand, learning 
more from positive outcomes can give rise to unrealistic 
optimism (Sharot et al., 2011) and risk-seeking behavior 
(Niv et al., 2012). On the other hand, learning more from 
negative outcomes can lead to unrealistic pessimism 
(Maier & Seligman, 1976) and risk aversion (Smoski 
et al., 2008). Thus, understanding the determinants of 
these asymmetries may provide insights into a wide 
range of behavioral phenomena and provide necessary 
information to curtail their harmful consequences.

One limitation of many past studies examining 
valence-dependent learning asymmetries is that they do 
not directly measure or control participants’ beliefs 
about causal structure, and hence they are not ideal for 
testing our hypothesis. In the present research, we con-
ducted a more direct test by manipulating the causal 
structure of a reinforcement-learning task to induce both 
positively biased and negatively biased learning asym-
metries in the same participants. Participants were asked 
to choose between two options with unknown reward 
probabilities and were informed that an agent could 
silently intervene to change the outcome positively 
(benevolent condition), negatively (adversarial condi-
tion), or randomly (neutral condition). Relying on a 
Bayesian model of causal inference, we expected that 
participants in the benevolent condition would update 
their beliefs about the reward probabilities more from 
negative than positive outcomes. We expected them to 
do so because negative outcomes could not have been 
caused by an interfering external agent but instead must 
have been a result of participants’ enacted choice (i.e., 
sampled from the option’s reward distribution). Likewise, 

we expected that participants would learn more from 
positive compared with negative outcomes in the adver-
sarial condition. To examine the robustness and flexibil-
ity of our model, we explored a more realistic scenario 
in Experiment 2, in which the probability of latent agent 
intervention was unknown to participants.

Experiment 1

In Experiment 1, we manipulated the causal structure 
underlying a reinforcement-learning task so that a hid-
den agent occasionally intervened to produce particular 
outcome types (good, bad, or random). This allowed 
us to test our primary hypothesis that positive outcomes 
would be weighed more heavily when the hidden agent 
was adversarial, whereas negative outcomes would be 
weighed more heavily when the hidden agent was 
benevolent. Importantly, if participants made no causal 
attributions in the task, they should learn equally well 
from positive and negative outcomes in all three experi-
mental conditions. However, any disproportionate 
learning of positive or negative outcomes could be 
attributed to the experimental manipulation of the 
causal structure. We formalized this hypothesis in terms 
of a Bayesian model that incorporates the underlying 
causal structure by rationally assigning credit to the 
different possible sources of feedback. This model 
describes participants’ beliefs about latent agent inter-
ventions, while also providing a mechanistic account 
for how beliefs are formed and how they influence 
learning from positive and negative feedback.

Method

Participants. Eighty participants (25 female, 52 male, 3 
unreported) were recruited from Amazon Mechanical 
Turk. The sample size was chosen in order to exceed 
sample sizes from previous, related work (Lefebvre et al., 
2017; Sharot et  al., 2011). Participants were excluded 
from analyses if they failed to choose the stimulus with 
the higher reward probability on more than 60% of trials, 
leaving data from 72 participants (20 female, 49 male, 3 
unreported) for subsequent analyses; 90% of participants 
met the accuracy criterion. Participants gave informed 
consent, and the Harvard University Committee on the 
Use of Human Subjects approved the experiment.

Procedure. Participants were instructed to imagine that 
they were mining for gold in the Wild West. On each trial, 
participants had to choose between two different-colored 
mines by clicking on a button underneath the mine of 
their choice (Fig. 1b, left). After making a decision, par-
ticipants either received gold (reward) or rocks (loss; Fig. 
1b). Each mine in a pair produced a reward with either 
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70% or 30% probability. Each reward yielded a small 
amount of real bonus money ($0.05), and each loss 
resulted in a subtraction of real bonus money ($0.05). 
Bonuses were summed, revealed, and paid out at the end 
of the task.

Participants completed three blocks of 50 trials each 
(150 total trials) in different “mining territories” (Fig. 
1a). Participants were instructed that different agents 
frequented each territory: a bandit who will steal gold 
from the mines and replace it with rocks (adversarial 
condition), a tycoon who will leave extra gold in the 
mines (benevolent condition), and a neutral sheriff who 
will try to redistribute gold and rocks in the mines 
(neutral condition). Participants completed each of the 
three conditions once, in randomized order. The agents 
intervened on 30% of the trials, and participants were 
told this percentage explicitly at the start of the task, 
though they did not know unambiguously whether the 
agent intervened on any particular trial. While the 
underlying reward distributions (i.e., absent interven-
tion) for the mines were 70% or 30%, the hidden agent 
intervened on 30% of trials (or 15 out of 50 trials). For 

example, the benevolent intervention produced rewards 
on 15 out of 50 trials, the adversarial intervention pro-
duced losses on 15 out of 50 trials, and the random 
intervention produced either losses or rewards on 15 
out of 50 trials. After feedback on each trial, participants 
were asked whether they believed the outcome they 
received was a result of hidden-agent intervention 
(binary response of “Yes” or “No”; Fig. 1b, right). To 
ensure that participants understood the task instruc-
tions, we asked them comprehension questions. Correct 
answers were required before participants could 
proceed.

Bayesian reinforcement-learning model. The prob-
lem facing participants during the task is to choose the 
option yielding the highest reward. Because they do not 
know the reward probabilities of the two mines, they 
must estimate them from experience, while taking into 
account possible intervention from the hidden agent. We 
developed a Bayesian reinforcement-learning model that 
jointly infers the hidden-agent interventions and the 
reward probabilities. Here, we summarize the model (see 

Dig Here

CHOOSE A MINE

Dig Here YesNo
Do you think that this outcome occurred

because the bandit intervened?

a

b
Bandit Choice Feedback and Judgment

BANDIT TYCOON SHERIFF

Fig. 1. Illustration of the behavioral task. At the start of each block, participants were told which of three hidden agents can intervene (a): 
the bandit (adversarial condition), the tycoon (benevolent condition), or the sheriff (neutral condition). Participants then chose between 
two different-colored mines (b, left). After receiving feedback, participants answered whether or not they believed that the hidden agent 
intervened on that trial (b, right).
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the Supplemental Material available online for a full math-
ematical description).

After choosing an action and observing reward rt on 
trial t, participants updated their estimates of the action’s 
intrinsic reward probability θt according to a reinforcement-
learning equation that depends on inferences about 
latent causes: θt + 1 = θt + αt (rt – θt), where αt is a learn-
ing rate. The learning rate changed across trials depend-
ing on the posterior probability of the hidden-agent 
intervention, as computed by Bayes’s rule. When the 
posterior probability was high, the learning rate was 
low. Intuitively, the model predicted that participants 
would suspend learning about the reward probabilities 
when they believed that the outcome was generated 
by an external force. Although the model was derived 
from Bayesian principles, at a mechanistic level, it 
closely resembles standard reinforcement-learning 
models that update reward predictions on the basis of 
prediction errors. Like other Bayesian reinforcement-
learning models, the dynamic learning rate was derived 
from probabilistic assumptions about the environment 
(e.g., Frank, Doll, Oas-Terpstra, & Moreno, 2009; Gershman, 
2015b; Gershman & Niv, 2015) rather than left as a free 
parameter. However, we enriched typical reinforce-
ment-learning models by rationally assigning credit to 
different possible sources of feedback. In other words, 
the learning rate in the Bayesian model was calculated 
by integrating one’s cumulative past beliefs about inter-
vention into one’s value estimate of a particular choice.

Critically, the learning rate exhibited asymmetries 
depending on whether the hidden agent tended to pro-
duce positive or negative outcomes. For example, when 
the agent was adversarial, positive outcomes could be 
generated only from the intrinsic reward probabilities, 
whereas negative outcomes could be generated by 
either the hidden agent or the intrinsic reward proba-
bilities. Consequently, negative outcomes were less 
informative about the reward probabilities in this sce-
nario, inducing a lower learning rate.

The Bayesian model was fitted using maximum a 
posteriori estimation with empirical priors based on 
previous research (Gershman, 2016). We computed a 
posterior over the underlying parameters and then 
input the expected values into a softmax function to 
model choice probabilities, with a response stochastic-
ity (inverse temperature) parameter and a “stickiness” 
parameter to capture choice autocorrelation (Gershman, 
Pesaran, & Daw, 2009).

A valence-dependent learning asymmetry is built 
into the structure of the Bayesian model. Thus, the 
model itself cannot be used to test for the existence of 
such an asymmetry. To provide evidence for asymmetric 
learning, we also fitted a reinforcement-learning model 
in which we modeled separate, fixed learning rates for 

positive and negative outcomes in each of the three 
experimental conditions (six learning rates total). This 
model is heuristic in the sense that it characterizes, but 
does not explain mechanistically, learning-rate asym-
metries in our task. Importantly, this model allowed for 
differential weighting of positively and negatively 
valenced outcomes without taking into account hidden-
agent interventions.

We used random-effects Bayesian model selection 
(Rigoux, Stephan, Friston, & Daunizeau, 2014; Stephan, 
Penny, Daunizeau, Moran, & Friston, 2009) to compare 
models. This procedure treats each participant as a 
random draw from a population-level distribution over 
models, which it estimates from the sample of model 
evidence values for each model. We used the Laplace 
approximation of the log marginal likelihood to obtain 
the model evidence values. For our model-comparison 
metric, we report the protected exceedance probability 
(PXP), the probability that a particular model is more 
frequent in the population than all other models under 
consideration, taking into account the possibility that 
some differences in model evidence are due to chance.

Results

Behavioral analyses. As a preliminary manipulation 
check, we verified that participants’ beliefs about hidden 
causes varied with the outcome valence in a condition-
specific manner (Fig. 2a). Participants were more likely 
to believe that a hidden cause resulted in negative out-
comes, as opposed to positive outcomes, overall, t(71) = 
16.82, p < .0001, d = −0.32, 95% confidence interval, or  
CI = [−0.55, −0.08]. Importantly, participants were more 
likely to believe that the hidden agent had intervened 
after negative than after positive outcomes in the adver-
sarial condition, t(71) = 66.24, p < .0001, d = −0.28, 95% 
CI = [−0.51, −0.04], and after positive than after negative 
outcomes in the benevolent condition, t(71) = −71.35,  
p < .0001, d = −0.99, 95% CI = [−1.23, −0.74]. Participants 
were also slightly more likely to believe that the hidden 
agent had intervened after negative outcomes in the neu-
tral condition, t(71) = 6.83, p < .0001, d = −0.31, 95%  
CI = [−0.55, −0.08]. We will revisit this effect in the con-
text of our computational model.

Computational modeling. To characterize the effects 
of outcome valence and agent type on learning, we first 
fitted a reinforcement-learning model with six separate 
learning rates. As shown in Figure 3a, participants gener-
ally learned more from positive than from negative out-
comes across all conditions, t(71) = 5.56, p < .0001, d = 
0.66, 95% CI = [0.32, 0.99]. By treating the positivity bias 
in the neutral condition, t(71) = 3.08, p < .003, d = 0.36, 
95% CI = [0.03, 0.70], as a participant-specific baseline 
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and subtracting it from the other conditions, we obtained 
a relative measure of learning rates for the adversarial 
and benevolent conditions (Fig. 3b), revealing an under-
lying sensitivity to condition and valence. A 2 (condition: 
adversarial vs. benevolent) × 2 (valence: positive vs. neg-
ative) repeated measures analysis of variance on relative 
learning rates revealed no significant main effects (p = .57 
for condition, p = .84 for valence), but a significant inter-
action, F(1, 71) = 4.91, p < .05. Consistent with our hypoth-
esis, results showed that the learning-rate advantage for 
positive versus negative outcomes reverses depending on 
the causal structure of the task.

Although the interaction effect is significant, the 
effects are small and noisy because the model is over-
parametrized. Modeling learning rates separately for 
each condition and outcome valence cannot capture 
a common learning mechanism, and the model has 
only a small amount of data from which to estimate 
each parameter. We therefore developed a Bayesian 
reinforcement-learning model that makes the common 
learning mechanism explicit. Learning rates in the 
Bayesian model are determined entirely by the causal 
structure, which is known to the participant. The only 
free parameters in the model are those governing the 
choice policy—response stochasticity and stickiness. 
We fixed the prior probability of hidden-agent inter-
vention in the Bayesian model at 30% to replicate the 
instructions that participants received in the task. 
Importantly, a variant of the model in which this probabil-
ity was treated as a free parameter for each participant 

yielded a value very close to the ground truth of 30% 
probability of intervention: M = 29.6%, SEM = 3.8%.

As expected, the Bayesian model showed a strong 
interaction between condition and outcome valence 
(Fig. 3c), a direct consequence of causal inference. To 
bolster our claim that causal inference predicts the 
valence-dependent learning-rate asymmetry, we exam-
ined the relationship between intervention judgments 
and learning rates (derived from the Bayesian model). 
We found that learning rates were significantly lower 
for trials in which participants believed that the hidden 
agent intervened, compared with trials in which par-
ticipants believed that the hidden agent did not inter-
vene, t(71) = −6.94, p < .0001, d = −0.82; see Figure 4a.

Quantitative metrics also supported the Bayesian 
model. First, the model could predict intervention judg-
ments even though it was not fitted to these judgments: 
A signed-ranks test between the participants’ guesses 
about intervention and the model’s posterior over inter-
vention showed a significant median point-biserial cor-
relation (rpb = .45, p < .0001). Second, the Bayesian 
model received unequivocally stronger support than 
the reinforcement-learning model with six learning 
rates, according to a random-effects model-selection 
procedure (PXP = 0.97 and PXP < 0.001). This model 
was also strongly favored over the Bayesian model with 
a free intervention-probability parameter (PXP < 0.001) 
and a non-Bayesian reinforcement-learning model with 
separate learning rates for positive and negative feed-
back (PXP = 0.03).
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Fig. 2. Average beliefs (a) and Bayesian model predictions (b) about hidden-agent interven-
tion for each condition and feedback type in Experiment 1. Intervention probability in (a) 
was calculated by taking the mean of each participant’s guess of whether or not the hidden 
agent caused a given outcome for each trial. Error bars represent standard errors of the mean.
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Discussion

Participants in Experiment 1 demonstrated asymmetric 
learning from positive and negative outcomes that 
reversed depending on the nature of a hidden interven-
ing agent: When the hidden agent intervened to pro-
duce negative outcomes, learning was greater for 
positive outcomes, and when the hidden agent inter-
vened to produce positive outcomes, learning was 
greater for negative outcomes. A Bayesian model cap-
tured this pattern and could also accurately predict 
participants’ trial-by-trial judgments about interven-
tions. As predicted by the model, learning rates were 
lower when participants believed that the hidden agent 
intervened. These results support our hypothesis that 
causal inference plays a central role in determining 
valence-dependent learning asymmetries.

Note that our data are not consistent with a model 
in which participants follow a simple rule of ignoring 
negative feedback in the adversarial environment and 
positive feedback in the benevolent environment. If 
they were in fact following such a rule, then we would 
expect learning rates in those cases to be 0, whereas 
in fact they are significantly greater than 0. The Bayes-
ian model captures the differential sensitivity to positive 
and negative feedback in a more graded manner than 
a simple rule-based model.

Experiment 2

One of the broader questions motivating this research 
is how the environment shapes learning-rate asymme-
tries. We addressed this question in Experiment 2 by 
creating a subtle ambiguity in our experimental task: 
Instead of informing participants of the exact interven-
tion probability, we simply told them that hidden agents 
occasionally intervene. We reasoned that this ambiguity 
more directly reflects real life; in the real world, prob-
abilities for interventions and outcomes are often 
unknown, and decisions are dependent on one’s prior 
expectations.

Method

Participants. Two groups of participants (total N = 
299) were recruited from Amazon Mechanical Turk—
Sample A: n = 110, 49 female, 56 male, 5 unreported; 
Sample B: n = 194, 90 female, 96 male, 8 unreported. 
Sample B was collected as part of a preregistered replica-
tion, though for the purposes of these analyses we have 
aggregated the two samples. (See the Supplemental 
Material for further information on the preregistered rep-
lication. Registration details can be found at https://osf 
.io/cx4u9/ on the Open Science Framework.) Participants 
were excluded from model fitting if they did not choose 
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Fig. 3. Learning rates in Experiment 1. Predictions of the reinforcement-learning model (a) are shown for each condition (adver-
sarial, benevolent, neutral) and outcome valence (positive, negative). In (b), predictions of the reinforcement-learning model are 
shown after the learning rates for the neutral condition (which serves as a participant-specific baseline) was subtracted from the 
other conditions. Relative learning rates from the Bayesian model (c) are shown for the adversarial and benevolent conditions, 
averaged across trials. Error bars represent standard errors of the mean.
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the stimulus with the higher reward probability for over 
60% of trials; of all participants, 85.3% met the accuracy 
criterion (86.4% of Sample A, 84.7% of Sample B). Partici-
pants were also excluded if they did not properly respond 
to an attention-check question (n = 6). We included data 
from 255 participants in the model fits (n = 95 for Sample 
A, n = 160 for Sample B). Participants gave informed 
consent, and the Harvard University Committee on the 
Use of Human Subjects approved the experiment.

Procedure. Behavioral-task procedures were identical 
to those in Experiment 1, except that participants were 
told that the hidden agents would intervene “sometimes.” 
Actual intervention remained fixed at 30% (15 of 50 trials 
per block).

Computational model. Because participants were not 
told the intervention probability, we explored models 
that either estimated the probability directly (the adaptive 
Bayesian model) or treated it as a free parameter (the 
fixed Bayesian model). In addition, we fitted a model in 
which the intervention probability was derived empiri-
cally by averaging the binary intervention judgments. We 
refer to this model as the empirical Bayesian model.

Results

Behavioral analyses. Results of Experiment 2 repli-
cated those of Experiment 1: Participants believed that 
the hidden agent caused negative outcomes more often 
than positive outcomes across all conditions, t(254) = 

6.26, p < .0001, d = −0.06, 95% CI = [−0.18, 0.06], and 
there was a significant difference between belief in the 
hidden agent for good outcomes in the benevolent and 
neutral conditions and for bad outcomes in the adver-
sarial and neutral conditions, t(254) = 7.03, p < .0001, d = 
0.29, 95% CI = [0.17, 0.41].

Computational modeling. Model comparison over-
whelmingly (PXP > 0.999) supported the empirical Bayesian 
model (in which the intervention probability was derived 
from the binary intervention judgments) compared with 
a more sophisticated adaptive Bayesian model (which 
estimated the intervention probability from experience) 
and a fixed Bayesian model (which treated the interven-
tion probability as a free parameter).

Once again, we found that participants had signifi-
cantly higher learning rates for positive outcomes than 
for negative outcomes, t(254) = 4.73, p < .0001, d = 
−0.82, 95% CI = [−0.95, −0.69]. In a further replication 
of our results from Experiment 1, we also found that 
learning rates were significantly lower for trials in 
which participants believed that the hidden agent inter-
vened, compared with trials in which they believed that 
the hidden agent did not intervene, t(252) = 16.77, p < 
.0001, d = −0.80, 95% CI = [−0.93, −0.67] (Fig. 4b).

A signed-ranks test between the participants’ actual 
guess about intervention and the intervention predicted 
by the model showed a significant median point-biserial 
correlation (rpb = .55, p < .0001), demonstrating that 
intervention judgments can be accurately predicted by 
the adaptive Bayesian model.
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Fig. 4. Learning rates for trials in which participants did or did not believe the outcome was a result of hidden-agent intervention, sepa-
rately for (a) Experiment 1 and (b) Experiment 2. Learning rates were derived from the Bayesian model (Experiment 1) and the empirical 
Bayesian model (Experiment 2). Error bars represent standard errors of the mean.
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Discussion

By modifying the behavioral task and the computational 
model to include an unknown probability of hidden-
agent intervention, we were able to gain insight into 
individual differences in prior expectations that govern 
valence-dependent learning asymmetries. First, a ver-
sion of the Bayesian model that derived the intervention 
probability from the average of participants’ binary 
judgments was favored by model selection among the 
models we considered. We conjecture that our task taps 
into prior expectations about the nature and frequency 
of hidden agents, possibly formed over a lifetime of 
learning.

General Discussion

Across two experiments, we found that the direction of 
valence-dependent learning asymmetries could be 
influenced by manipulating beliefs about causal struc-
ture. Specifically, participants learned more from posi-
tive than from negative outcomes when hidden agents 
intervened adversarially; conversely, they learned more 
from negative than from positive outcomes when hid-
den agents intervened benevolently. A Bayesian model 
explained the complete pattern of asymmetries, and an 
extension of the model that inferred the probability of 
hidden-agent intervention could capture performance 
in the more complex scenario in which the intervention 
probability was unknown.

Our findings are consistent with the long-standing 
idea that optimistic biases are not exclusively a conse-
quence of increased salience of positive outcomes but 
also involve external attribution of negative outcomes 
(Miller & Ross, 1975). Across two independent samples, 
people displayed a generalized tendency to attribute 
positive outcomes to themselves and negative outcomes 
to others. Numerous studies have provided evidence 
for the prevalence of a self-serving bias (the attribution 
of good outcomes to oneself and bad outcomes to 
external forces; Campbell & Sedikides, 1999; Hughes 
& Zaki, 2015). For example, people are more likely to 
think a third party influenced a gamble when the out-
come was a loss instead of a win (Morewedge, 2009), 
they are more likely to take credit for positive as 
opposed to negative outcomes (Bradley, 1978), and 
they demonstrate decreased intentional binding for 
monetary losses compared with gains as well as nega-
tive versus positive affect cues (Takahata et al., 2012; 
Yoshie & Haggard, 2013). Our computational model 
does not take into account a self-preservation bias, but 
removing individual variance by subtracting the bias in 
the neutral condition from the other two conditions 
resulted in our hypothesized asymmetry. In addition, 

our data show that participants have higher learning 
rates for positive outcomes. This discrepancy between 
learning rates for good and bad news is consistent with 
the well-studied phenomenon of an inherent optimism 
bias (Weinstein, 1980). Therefore, it may be more dif-
ficult for individuals to discount their agency over 
rewards, even when they are provided with explicit 
instructions about the structure of the environment.

While our model can account for our experimental 
findings and the related phenomena reviewed above, 
we have not demonstrated that it provides a compre-
hensive account of optimism bias in general. It is dif-
ficult to attribute optimism bias to causal structure 
without knowing (or manipulating) participants’ struc-
tural beliefs, which was the starting point of the present 
research. Nonetheless, it is possible to speculate (see 
Gershman, 2018, for more details). If people have a 
strong belief in their self-efficacy, then observing failure 
will favor the hypothesis that a latent cause was respon-
sible, resulting in less updating compared with observ-
ing success. One suggestive source of data comes from 
studies of psychiatric disorders, in which beliefs about 
self-efficacy and agency are disrupted.

Previous work has shown that learning asymmetries 
are associated with depression, anhedonia, and pessi-
mism and optimism. For example, research demon-
strates that depressed patients with anhedonia exhibit 
blunted learning for both rewards and punishments 
(Chase et  al., 2010) and that depressed participants 
accurately recall negative outcomes whereas healthy 
participants underestimate the frequency of negative 
outcomes (Nelson & Craighead, 1977). It should be 
noted, however, that other studies have also found no 
relationship between optimism and asymmetric updat-
ing (Stankevicius, Huys, Kalra, & Seriès, 2014). Our 
findings suggest that optimistic and pessimistic traits 
should depend on the interaction between imbalanced 
learning and beliefs about agency. We propose that a 
latent factor, such as agency inference, may be mediat-
ing inconsistent findings in the literature regarding 
imbalanced learning for positive and negative out-
comes. This idea is supported by research that shows 
that optimistic and pessimistic biases can be manipu-
lated by changes in outcome controllability. For exam-
ple, greater perceived control is associated with 
increased optimism bias (Weinstein, 1980), and this 
finding has also been shown in a large meta-analysis 
(Klein & Helweg-Larsen, 2002). In a seminal study by 
Alloy and Abramson, nondepressed participants exhib-
ited an agency bias for desired outcomes and a nona-
gency bias for undesired outcomes, while depressed 
participants showed no such bias (Alloy & Abramson, 
1979). This work suggests that biased beliefs of control 
may protect against depression and that these cognitive 
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distortions arise not solely from a belief that individuals 
have control over positive outcomes, but that negative 
outcomes can be attributed to someone or something 
outside of oneself (though see Msetfi, Murphy, Simpson, 
& Kornbrot, 2005, for evidence that abnormal beliefs 
about control in depression may be attributable to an 
impairment in contextual processing).

Conclusion

In sum, we provide evidence that valence-dependent 
learning asymmetries arise from causal inference over 
hidden agents. This idea, formalized in a simple Bayes-
ian model, was able to quantitatively and qualitatively 
account for both choices and intervention judgments. 
An important task for future researchers will be to 
understand the limits of this framework: to what extent 
can we understand self-serving biases, learned helpless-
ness, and other related behavioral phenomena in terms 
of a common computational mechanism? More gener-
ally, the real world is typically less well behaved than 
the idealized experimental scenarios studied in the 
present research; people constantly face causally com-
plex and ambiguous inferential problems, where simple 
attributions to “good” and “bad” hidden agents may not 
be applicable. We foresee an exciting challenge in 
extending the Bayesian framework to tackle these more 
realistic settings.
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