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a b s t r a c t

Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing

retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that

memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect

is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a

memory now should impair your ability to recall that memory later. Here, we address both of these

puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the

function relating memory activation to learning is U-shaped, such that moderate levels of memory

activation lead to weakening of the memory and higher levels of activation lead to strengthening.

According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed

item activates moderately during the suppression attempt, leading to weakening; the effect is variable

because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it

does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/

no-think experiment where participants learned word-picture pairs; we used pattern classifiers,

applied to fMRI data, to measure how strongly the picture associates were activating when participants

were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to

relate this covert neural measure of retrieval to performance on a later memory test. In keeping with

our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory

activation (as measured by the classifier) and subsequent memory, whereby moderate levels of

activation of the to-be-suppressed item led to diminished performance on the final memory test, and

higher levels of activation led to enhanced performance on the final test.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Decades of memory research have established that retrieval is
not a passive process whereby cues ballistically trigger recall of
associated memories—in situations where the associated memory is
irrelevant or unpleasant, we all possess some (imperfect) ability
to prevent these memories from coming to mind (Anderson &
Huddleston, 2012). The question of interest here concerns the
long-term consequences of these suppression attempts: How does
suppressing retrieval of a memory now affect our ability to subse-
quently retrieve that memory later?

Recently, this issue has been studied using the think/no-think
paradigm (Anderson & Green, 2001; for reviews, see Anderson &
Huddleston, 2012; Anderson & Levy, 2009, and Raaijmakers &
ll rights reserved.
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Jakab, 2013). In the standard version of this paradigm, partici-
pants learn a set of novel paired associates like ‘‘elephant-
wrench’’. Next, during the think-no think phase, participants are
presented with cue words (e.g., ‘‘elephant’’) from the study phase.
For pairs assigned to the think condition, participants are given
the cue word and instructed to retrieve the studied associate. For
pairs assigned to the no-think condition, participants are given the
cue word and instructed to not think of the studied associate. In
the final phase of the experiment, participants are given a
memory test for think pairs, no-think pairs, and also baseline

pairs that were presented at study but not during the think/no-
think phase. Anderson and Green found that think items were
recalled at above-baseline levels, and no-think items were
recalled at below-baseline levels. This below-baseline suppression

suggests that the act of deliberately suppressing retrieval of a
memory can impair subsequent recall of that memory.

Extant accounts of think/no-think have focused on the role
of cognitive control in preventing no-think items from being
retrieved during the no-think trial. One way that cognitive control
can influence performance on no-think trials is by sending
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Fig. 1. Hypothesized nonmonotonic relationship between the level of activation of

a memory and strengthening/weakening of that memory. Moderate levels of

activation lead to weakening of the memory, whereas higher levels of activation

lead to strengthening of the memory. The background color redundantly codes

whether memory activation values are linked to weakening (red) or strengthening

(green).

2 Note that, in addition to our group’s neural network model (Norman,

Newman et al., 2006; Norman et al., 2007), several other neural network models

have been developed that instantiate some form of nonmonotonic plasticity

(Bienenstock, Cooper, & Munro, 1982; Diederich & Opper, 1987; Gardner, 1988;

Senn & Fusi, 2005; Vico & Jerez, 2003). While all of these models predict the initial

dip and rise in the plasticity curve, there is disagreement between models

regarding the far right side of the plasticity curve (i.e., what happens for very

high levels of activation). Some models (e.g., Bienenstock, Cooper, & Munro, 1982)

predict that very high levels of activation will lead to strengthening, as is pictured

in Fig. 1. Other models (e.g., Norman et al., 2006) predict that, for very high levels

of activation, the plasticity curve will go back down to zero. In the present paper,

we focus on the initial dip and rise, and we remain agnostic about whether the

plasticity curve stays high for very high levels of activation or whether it goes back

down to zero.
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top-down excitation to other associates of the cue. For example,
for the cue ‘‘elephant’’, participants might try to focus on other
associates of the cue (e.g., ‘‘gray’’ or ‘‘wrinkly’’) to avoid thinking
of ‘‘wrench’’; these substitute associations will compete with
‘‘wrench’’ and (if they receive enough top-down support) they
will prevent wrench from being retrieved (Hertel & Calcaterra,
2005). Another way that cognitive control systems may be able to
influence performance is by directly shutting down the hippo-
campal system, thereby preventing retrieval of the episodic
memory of ‘‘wrench’’ (Depue, Curran, & Banich, 2007). For addi-
tional discussion of these cognitive control strategies and their
potential role in think-no think, see Levy and Anderson (2008),
Bergström, de Fockert, and Richardson-Klavehn (2009), Munakata
et al. (2011), Depue (2012), Benoit and Anderson (2012), and
Anderson and Huddleston (2012).

The goal of the work presented here is to address two
fundamental questions about forgetting of no-think items. The
first key question pertains to the relationship between activation
dynamics (during the no-think trial) and long-term memory for
the no-think items: Why does the use of cognitive control during
the no-think trial lead to forgetting of the no-think item on the
final memory test? Logically speaking, the fact that the no-think
memory was successfully suppressed during the no-think trial
does not imply that the memory will stay suppressed on the final
memory test; to explain forgetting on the final memory test, the
activation dynamics that are present during the no-think trial
must somehow trigger a lasting change in synaptic weights
relating to the no-think item. Anderson’s executive control theory
(Anderson & Levy, 2009, 2010; Anderson & Huddleston, 2012;
Levy & Anderson, 2002, 2008; see also Depue, 2012) asserts that
successful application of cognitive control during the no-think
trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic
account of how we get from successful cognitive control to
weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression
of these inhibitory memory effects. While the basic no-think
forgetting effect has been replicated many times (see Anderson &
Huddleston, 2012 for a meta-analysis and review of 32 published
studies, which showed an average decrease in recall of 8%),
there have also been several failures to replicate this effect (e.g.,
Bergström, Velmans, de Fockert, & Richardson-Klavehn, 2007;
Bulevich, Roediger, Balota, & Butler, 2006; Hertel & Mahan, 2008;
Mecklinger, Parra, & Waldhauser, 2009; for additional discussion of
these findings, see Anderson & Huddleston, 2012 and Raaijmakers &
Jakab, 2013).

In this paper, we explore the idea that both of the aforemen-
tioned questions – why does suppression (during a trial) cause
forgetting, and why are memory inhibition effects so variable – can
be answered using a simple learning principle that we refer to as the
nonmonotonic plasticity hypothesis. According to this principle, the
relationship between memory activation and strengthening/weak-
ening is U-shaped, as shown in Fig. 1: Very low levels of memory
activation have no effect on memory strength; moderate levels of
memory activation lead to weakening of the memory; and higher
levels of memory activation lead to strengthening of the memory.

The nonmonotonic plasticity hypothesis can be derived from
neurophysiological data on synaptic plasticity: Studies of learning at
individual synapses in rodents have found a U-shaped function
whereby moderate depolarizing currents and intermediate concen-
trations of postsynaptic Ca2þ ions (indicative of moderate excitatory
input) generate long-term depression (i.e., synaptic weakening), and
stronger depolarization and higher Ca2þ concentrations (indicative
of greater excitatory input) generate long-term potentiation (i.e.,
synaptic strengthening) (Artola, Brocher, & Singer, 1990; Hansel,
Artola, & Singer, 1996; see also Bear, 2003). To bridge between these
findings and human memory data, our group built a neural network
model that instantiates nonmonotonic plasticity at the synaptic
level, and we used the model to simulate performance in a wide
range of episodic and semantic learning paradigms (Norman,
Newman, Detre, & Polyn, 2006; Norman, Newman, & Detre, 2007).
These simulations clearly showed that nonmonotonic plasticity
‘‘scales up’’ from the synaptic level to the level of neural ensembles:
In the model, moderate activation of the neural ensemble respon-
sible for encoding a memory led to overall weakening of that neural
ensemble (by weakening synapses within the ensemble and
synapses coming into the ensemble) and diminished behavioral
expression of the memory (for a related result see Gotts & Plaut,
2005). The overall effect of nonmonotonic plasticity in the model
was to sharpen the contrast between strongly activated memories
and less-strongly activated memories, by increasing the strength
of the former and reducing the strength of the latter; this, in turn,
reduced the degree of competition between these memories on
subsequent retrieval attempts (Norman, Newman et al., 2006;
Norman et al., 2007).2

The nonmonotonic plasticity hypothesis provides an answer to
both questions posed earlier: Why does suppression on the no-
think trial lead to forgetting on the final test, and why are no-
think forgetting effects so variable? The nonmotonic plasticity
hypothesis can explain long-lasting forgetting by positing that the
associate becomes moderately active during the no-think trial.
Spreading activation from the cue pushes the activation of the
memory upward, and cognitive control pushes the activation of
the memory downward. This can result in a dynamic equilibrium
where the memory is somewhat active (because of spreading
activation) but not strongly active (because of cognitive control).
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If the memory ends up falling into the ‘‘dip’’ of the plasticity curve
shown in Fig. 1, this will result in weakening of the memory,
making it harder to retrieve on the final test.

The nonmonotonic plasticity hypothesis also can explain why
forgetting effects are sometimes not found for no-think items
(Bulevich et al., 2006): Note that the ‘‘moderate activity’’ region
that leads to forgetting is bounded on both sides by regions of the
curve that are associated with no learning and memory strength-
ening, respectively. If memory activation is especially low on a
particular trial (e.g., because of especially effective cognitive
control), then – according to the plasticity curve – no learning
will take place. Likewise, if memory activation is too high on a
particular trial (e.g., because of a temporary lapse in cognitive
control), then – according to the plasticity curve – it will be
strengthened, not weakened. The key point here is that, even if
the average level of memory activation (across no-think trials)
corresponds to the exact center of the dip in the plasticity curve,
any variability around that mean might result in memories falling
outside of the dip, thereby reducing the size of the forgetting
effect. This theoretical effect here resonates with the Goldilocks
fairy tale: To get forgetting, the level of activation can not be too
high or too low – it has to be ‘‘just right’’.

Importantly, this U-shaped relationship between activation
and subsequent memory is also predicted by Anderson’s execu-
tive control hypothesis. Anderson and Levy (2010) motivate this
U-shaped relationship in terms of a ‘‘demand-success tradeoff’’:
As activation of the no-think memory increases, the demand for
cognitive control increases, thereby increasing the likelihood that
cognitive control will be engaged (leading to lasting inhibition of
the memory). However, strong activation of the no-think memory
also increases the odds that cognitive control mechanisms will
fail to suppress the memory; according to Anderson’s theory,
when cognitive control mechanisms fail, no lasting suppression
occurs. Putting these two countervailing trends together, the
overall prediction is a U-shaped curve with a ‘‘sweet spot’’ in
the middle (where there is enough activation to trigger a
suppression attempt, but not so much activation that the sup-
pression attempt fails). The goal of the work described here was
to test this shared prediction of our theory and Anderson’s
executive control theory; later, in the Discussion section, we talk
about potential ways of teasing apart these theoretical accounts
of inhibition.

How can we experimentally demonstrate that moderate acti-
vation leads to forgetting? As experimenters, our instinct is to try
to carefully devise a set of conditions that elicit just the right
amount of memory activation. However, there are fundamental
limits on our ability (as experimenters) to control activation
dynamics – there will always be some variability in participants’
memory state, making it difficult to reliably land memories in the
dip of the plasticity curve.

To get around this problem, we used an alternative strategy.
Instead of trying to exert more control over how strongly the no-
think associate activates, we used pattern classifiers, applied to
fMRI data, to measure how strongly memories were activating on
individual no-think trials, and we related this covert neural
measure of retrieval to performance on the final memory test. If
the nonmonotonic plasticity hypothesis is correct, then moderate
levels of memory activation (as measured by the classifier) should
lead to forgetting on the final test, but higher and lower levels of
activation should not lead to forgetting.

To facilitate our pattern classification analyses, we had parti-
cipants learn word-picture pairs instead of word-word pairs.
Our design leverages prior work showing that (1) fMRI pattern
classifiers are very good at detecting category-specific activity
(e.g., the degree to which scenes or faces are being processed)
based on a single fMRI scan (acquired over a period of
approximately 2 s; for relevant reviews, see Haynes & Rees,
2006; Norman, Polyn, Detre, & Haxby, 2006; Pereira, Mitchell, &
Botvinick, 2009; Rissman & Wagner, 2012; Tong & Pratte, 2012),
and (2) classifiers trained on perception of categorized stimuli can
be used to detect when participants are thinking of that category
on a memory test (see,e.g., Kuhl, Rissman, Chun, & Wagner, 2011;
Kuhl, Bainbridge, & Chun, 2012; Lewis-Peacock & Postle, 2008,
2012; Polyn, Natu, Cohen, & Norman, 2005; Zeithamova,
Dominick, & Preston, 2012). In our study, the picture associates
were drawn from four categories: faces, scenes, cars, and shoes.
For example, participants might study the word ‘‘nickel’’ paired
with the image of a particular face, and the word ‘‘acid’’ paired
with the image of a particular scene. We trained fMRI pattern
classifiers to track activation relating to the four categories,
then we used the category classifiers to covertly track retrieval
of picture associates during the think-no think phase of the
experiment.

To illustrate the logic of the experiment, consider a no-think
trial where the participant was given the word ‘‘nickel’’ and
instructed to not think of the associated picture. If nickel was
paired with a face at study, we would use the face classifier on
this trial to measure the activation of the face associate. Our
prediction for this trial is that moderate levels of face activity
should be associated with forgetting, whereas higher levels of face
activity should be associated with improved memory.

A key assumption of this approach is that we can use classifiers
that are tuned to detect category activation to track retrieval of
specific items (here, no-think associates). This strategy of using
category classifiers to track retrieval of paired associates from
episodic memory has been used to good effect in several previous
studies (e.g., Kuhl et al., 2011; Kuhl, Bainbridge, & Chun, 2012;
Zeithamova et al., 2012). Logically speaking, there can be fluctua-
tions in category activation that are unrelated to retrieval of no-
think associates. The assumption we are making here is that, in the
context of this paradigm, category and item activity covary well
enough for us to use the former to index the latter. We revisit the
assumptions underlying this approach and consider alternative
explanations of our data in the Discussion section.
2. Material and methods

2.1. Overview of the study

The paradigm was composed of four phases, spread out over two days. The

study phase, which was not scanned, took place on Day 1 (see Section 2.3.1). In this

phase, participants learned word-picture pairs using a learn-to-criterion proce-

dure; each pair was trained until participants correctly remembered it once.

Pictures were chosen from the following categories: faces, scenes, cars, shoes. The

think/no-think phase, which was scanned, took place on Day 2 (see Section 2.3.2).

For this phase, some studied pairs were assigned to the think condition, others

were assigned to the no-think condition, and others were assigned to a baseline

condition, meaning that they did not appear at all during the think/no-think

phase. For pairs assigned to the think condition, participants were given the word

cue and instructed to retrieve the associated picture. For pairs assigned to the no-

think condition, participants were given the word cue and instructed to not

retrieve the associated picture. Each cue assigned to the no-think condition was

presented 12 times during this phase; each cue assigned to the think condition

was presented six times during this phase. Following the think/no-think phase on

Day 2, participants were given the functional localizer phase, which was also

scanned (see Section 2.3.3). In this phase, participants viewed pictures blocked by

category and performed a simple one-back matching task. Data from this phase

were used to train the category-specific classifiers. After the functional localizer

phase, participants exited the scanner and were given a final memory test for the

pairs that they learned during the study phase (see Section 2.3.4).

Our primary goal was to estimate the shape of the ‘‘plasticity curve’’ (relating

memory retrieval strength for no-think items to subsequent memory for those

items), to see how well it fits with the nonmonotonic plasticity hypothesis

illustrated in Fig. 1. To accomplish this goal, we used a fMRI pattern classifier to

measure memory activation during no-think trials (see Section 2.5). We then used
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a novel Bayesian curve-fitting procedure to estimate the posterior distribution

over plasticity curves, given the neural and behavioral data (see Section 2.7).
2.2. Participants

31 participants (19 female, aged 18–35) participated in a paid experiment

spanning 2 days, advertised as an experiment on ‘‘attention and mental imagery’’.

All of the participants were native English speakers and were drawn from the

Princeton community.

We excluded five of the 31 participants for the following reasons: One

participant was excluded because they fell asleep during the scanning session.

Another participant was excluded because (due to a technical glitch) they did not

study the full set of items. Finally, three participants were excluded because they

performed poorly (more than 2 SD below the mean¼ less than 55% correct) on the

functional localizer one-back task; these participants’ poor performance suggests

that they were not paying close attention to the stimuli during the functional

localizer. Since the functional localizer data were used to train the classifier,

inattention during this phase could have compromised classifier training and

(through this) could have compromised our ability to track memory retrieval on

no-think trials.
2.2.1. Stimuli

During the experiment, participants learned 54 word-picture pairs. 18 words

were paired with faces, 18 words were paired with scenes, nine words were paired

with cars, and nine words were paired with shoes. Two additional word-car pairs

and two additional word-shoe pairs were set aside for use as primacy and recency

filler stimuli during the study phase. There were also 10 pictures from each

category that were used during the functional localizer phase (but not elsewhere

in the experiment). All of the associate images were black and white photographs.

The face photos depicted anonymous and unfamiliar male faces with neutral

expressions; images were square-cropped to show the face only (not hair). The
nickel

nickel

1500ms

4000ms

nickel

4000ms

nickel

nickel

:)

1 = shoe
2 = car
3 = face
4 = bedroom

2000ms

750ms

Initial Study Trial

Subsequent Study Trial

Fig. 2. (a) Examples of the car, face, scene and shoe stimuli used in the study. (b–d)
scene photos depicted bedroom interiors. Car and shoe photos depicted these

items from a side view. See Fig. 2a for sample images.

The word cues were imageable nouns drawn from the Toronto Word Pool

(Friendly, Franklin, Hoffman, & Rubin, 1982) and other sources (mean K-F

frequency, when available, was 24; mean imageability [1¼ low, 7¼high], when

available, was 5.7; mean length was 5.5 letters). The word pool was filtered to

exclude nouns that were judged to be semantically related to any of the image

categories (to minimize encoding variability between word/image pairs), leaving

a pool of 611 words. The word-picture pairings were generated by drawing

randomly from the pool of available words and pictures for each participant,

subject to the constraints outlined above.

Controlling the low-level visual characteristics of the image categories: Images

from all four categories were matched for size and luminance. The scene

photographs were rectangular, yet the cars, faces, and shoes all had irregular

boundaries and took up differently sized areas on the screen. To compensate for

this, we generated noisy background images by scrambling the Fourier compo-

nents of the scenes, and placed each car, face and shoe image onto one, making

them the same rectangular size and shape as the scenes. Additionally, the various

photographs differed in their luminance profile. In an effort to reduce this, we

utilized Matlab’s imadjust and adapthiseq functions to readjust the contrast,

normalize the luminance within each ‘‘tile’’ of the image, and then smooth the

boundaries between tiles. To combine the separate boundary shape/size and

luminance compensation procedures described above, we first equalized the scene

images, generated the scrambled backgrounds, superimposed the other categories

on top of the backgrounds, and then ran the luminance equalization for these

compound images.
2.3. Behavioral methods

2.3.1. Study phase (Day 1, outside the scanner)

On the first day, participants learned a set of paired associations between

words and images.
4000ms

4000ms

nickel

+

nickel

X

nickel

750ms

4000ms

2500 ms

nickel

tablet

4000ms

2000ms

tablet
1 = shoe
2 = car
3 = face
4 = bedroom

+

4000ms

nickel

nickel

nickel1 = shoe
2 = car
3 = face
4 = bedroom

4000ms

2000ms

2500ms

Think Trial

No-Think Trial

Test Trial

Timelines for the study phase (b), think-no think phase (c), and test phase (d).
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Initial presentations: Each of the pairs was presented once initially. In each

presentation trial, the cue word appeared alone for 1500 ms (to ensure that

participants attended to it), and then both the cue word and associate image were

presented together for 4000 ms - see Fig. 2b.

Subsequent presentations: For the rest of the study phase, participants’ memory

for each of the paired associates was tested in a randomized order. For each pair,

they were shown the cue word for 4000 ms and then asked to make a four-

alternative forced choice for the category of the associated image (2000 ms time

limit). If they were correct, they were then asked to make a four-alternative forced

choice between the correct associate and three familiar foil images (2500 ms time

limit). Foils were selected randomly on each trial from the set of studied pictures

from that category (e.g., if the correct response was a face, the foils were three

faces that had been paired with other words at study). Both of the four-alternative

forced choice tests used button presses; the left-to-right ordering of the stimuli

was randomized on each trial. After each button press, participants were shown a

feedback display for 750 ms indicating the accuracy of their response (a red X was

shown if the response was incorrect, and a green smiley-face emoticon was shown

if the response was correct). If their responses on either of these forced-choice

memory tests were wrong (or too slow), the cue and image were re-presented

together for 4000 ms (see Fig. 2b). Note that, in the trial illustrated in the figure,

the participant made the wrong item response, so the participant was shown the

cue and image together at the end of the trial. In order to minimize encoding

variability due to primacy and recency effects, two filler pairs (one word-car pair

and one word-shoe pair) were used as primacy buffers (appearing at the beginning

of each presentation and testing run) and two other filler pairs (again, one word-

car pair and one word-shoe pair) were used as recency buffers (appearing at the

end of each presentation and testing run) throughout the study phase. These four

pairs did not appear at all outside of the study phase of the experiment.

Every pair was tested (with re-presentation for wrong responses) until it had

been answered correctly once, at which point it was dropped from the study set.

The order of (remaining) pairs in the study set was randomly shuffled after each

pass through the study set. This study-to-criterion procedure was designed to

enable the formation of reasonably strong associations and to minimize the

encoding variability between pairs.

2.3.2. Think/no-think phase (Day 2, inside the scanner)

During the think/no-think phase, the 54 pairs were randomly assigned to

either the think group (36 pairs), the no-think group (eight pairs), or the baseline

group (10 pairs). Assignment of pairs to groups was random, subject to the

following constraints: 12 faces, 12 scenes, six cars, and six shoes were assigned to

the think condition; four faces and four scenes were assigned to the no-think

condition; and five faces and five scenes were assigned to the baseline condition.

For the think pairs, participants practiced retrieving the associates. For the no-

think pairs, they practiced suppressing recollection of the associates. The baseline

pairs did not appear at all during this phase. We decided to only use faces and

scenes (i.e., not cars and shoes) in the no-think condition because we wanted

to maximize our ability to detect (possibly faint) memory activation in that

condition—numerous prior studies have found that face processing and place

processing (e.g., scenes, houses) are more detectable in fMRI data than processing

of other categories (e.g., Haxby et al., 2001; Lashkari, Vul, Kanwisher, & Golland,

2010; Vul, Lashkari, Hsieh, Golland, & Kanwisher, 2012).

The think/no-think phase was scanned; the scanning period was divided into

six scanner runs. Each think pair appeared once per run, and each no-think pair

appeared twice, for a total of six repetitions per think pair, and 12 repetitions per

no-think pair. We used 12 repetitions for no-think items because of prior work

showing that large numbers of no-think trials are needed to generate forgetting

(i.e., below-baseline memory) for no-think items (e.g., Anderson & Green, 2001;

Anderson, Reinholz, Kuhl, & Mayr, 2011). The ordering of the trials was rando-

mized. As has been done in other think/no-think studies (e.g., (Anderson et al.,

2004)), the instruction to either think or not think in response to a cue was

conveyed via the color of the cue word: If the cue word was presented in green,

this indicated to participants that they should think of the associate; if the cue

word was presented in red, this indicated to participants that they should not

think of the associate.

Fig. 2c shows the timelines for think and no-think trials. Each think trial

consisted of a word-only cue presentation (4000 ms), a category memory test

(2000 ms), and then a fixation task (4000 ms). During the word-only cue

presentation, participants were cued with the word for that pair colored green

and asked to form a vivid and detailed mental image of its associate for as long as

the word was on the screen. Then, for the category memory test, they responded

to a four-alternative forced choice with the category of the associate. For the

fixation task, participants were asked to fixate on a small ‘‘þ ’’ in the center of the

screen and to count silently how many times it changed brightness for as long as

the cross remained on the screen (brightness changes occurred at intervals

uniformly sampled from 250 ms to 1500 ms).

Each no-think trial consisted of a word-only cue presentation (4000 ms) and

then a fixation task (4000 ms). During the word-only cue presentation, partici-

pants were cued with the word for that pair colored red and asked to try as hard as

possible to avoid thinking about the associated image. Participants were told that

they could accomplish this goal in any way they saw fit, as long as they kept
paying attention to and looking at the red word throughout the presentation

period. The fixation task was the same as for think trials.

Note that there were no image presentations during any part of the think/no-

think phase, nor was any feedback given. Participants were discouraged from

deliberately thinking about the no-think associates at any point during the think/

no-think phase and from averting their gaze during the word-only cue period of

no-think trials. They were also questioned about their strategies after the

experiment to confirm that the instructions had been followed.
2.3.3. Functional localizer (Day 2, inside the scanner)

In the final functional scanning run, participants performed a 7-min 1-back

task on images of cars, faces, scenes and shoes. Our aim here was to generate a

clean, robust neural signal in response to viewed images that we could use to train

the classifier.

Each image was presented for 1 s as part of a 16-image block; images were

sized so they subtended approximately 20 degrees by 20 degrees of visual angle.

Participants performed a one-back test: They were asked to press a button on each

trial to indicate whether the current image exactly matched the previous image.

These trial-by-trial responses provided a straightforward indication of alertness

that helped us pick out inattentive participants. As noted in Section 2.2, three

participants were excluded because their one-back accuracy level was more than

two SDs below the mean; for the 26 participants included in our main analyses,

the mean one-back accuracy level was 0.87 and the standard deviation across

participants was 0.07.

Each block comprised a single category of images, e.g., solely faces. There were

18 blocks in total (six face, six scene, three car, three shoe). We created three

between-subjects counter-balanced one-back designs, in each case ensuring there

were 10 matches in each block, that each exemplar appeared the same number of

times as every other in that category, and that every category block followed and

was followed by every other roughly the same number of times. Each block

was separated by a 10 s fixation period to allow the haemodynamic response to

subside. Although the functional localizer stimuli were generated in the same

manner and belonged to the same four categories as the association images

previously studied, none of the specific exemplars used in this phase had appeared

during the study phase.
2.3.4. Final memory test (Day 2, immediately after the scanning session)

Participants’ memory for all the pairs was tested in this final phase of the

experiment, conducted after all the scanning had been completed. On each trial,

participants were first presented with a word-only cue, in black ink (4000 ms).

They were then presented with a four-alternative forced choice for the category of

the associated image (2000 ms), followed by a four-alternative forced choice for

the individual exemplar (2500 ms). As in the study phase, foils on the item

memory test were randomly sampled from the set of studied pictures from that

category (including NT, T, and baseline associates). No feedback was given; see

Fig. 2d. A lack of response was marked as incorrect. Unlike the study phase,

participants were always presented with both the category and the exemplar

forced-choice tests (e.g., if the correct category was face and the participant

incorrectly chose shoe, they were still presented with the four-alternative forced

choice test for individual faces). Participants were asked to do their best to

remember the associates, even if they had previously been presented in red as no-

think pairs or excluded from the think/no-think phase altogether as baseline pairs.

For the analyses described below, we considered a pair to have been remembered

correctly only if both the category and the exemplar responses were correct.
2.4. fMRI data collection

2.4.1. Scanning details

The fMRI data were acquired on a Siemens Allegra 3-Tesla scanner at the

Center for the Study of Brain, Mind, and Behavior at Princeton University. Anatomical

brain images were acquired with a fast (5-min) MP-RAGE sequence containing 160

sagittally oriented slices covering the whole brain, with TR¼2500 ms, TE¼4.38 ms,

flip angle¼8, voxel size¼1.0�1.0�1.0 mm, and field of view¼256 mm. Functional

images were acquired with an EPI sequence, containing 34 axial slices covering

almost the whole brain, collected with a TR¼2000 ms, TE¼30 ms, flip angle¼75,

voxel size¼3.0�3.0�3.96 mm, field of view¼192 mm.

The first six runs were for the think/no-think phase (253 volumes each). The

7th run was for the functional localizer phase (238 volumes). The final run was for

the anatomical scan. Each run began with a 10 s blank period to allow the scanner

signal to stabilize, and ended with an 8 s blank period to allow for the time lag of the

haemodynamic response. In total, we collected 253 volumes for each of the 6 think/

no-think functional runs, followed by 238 volumes for the functional localizer run,

totaling 1756 functional volumes. Combined with the 5-min anatomical scan, this

amounted to a little over an hour of scanning, excluding breaks between runs and the

brief localizer scout and EPI test runs beforehand.
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2.4.2. fMRI preprocessing

The functional data were preprocessed using the AFNI software package (Cox,

1996). Differences in slice timing were corrected by interpolation to align each

slice to the same temporal origin. Every functional volume was motion-corrected

by registering it to a base volume near the end of the functional localizer (7th) run,

which directly preceded the anatomical scan (Cox & Jesmanowicz, 1999). A brain-

only mask was created (dilated by two voxels to ensure no cortex was accidentally

excluded) using AFNI’s 3dAutomask command. Signal spikes were then smoothed

away on a voxel-by-voxel basis. Each voxel’s timecourse was normalized into a

percentage signal change by subtracting and dividing by its mean (separately for

each run), truncating outlier values at 2. No spatial smoothing was applied to the

data. Baseline, linear and quadratic trends were removed from each voxel’s

timecourse (separately for each run). The functional data were then imported

into Matlab (Mathworks, Natick MA) using the Princeton MVPA toolbox (Detre

et al., 2006). In Matlab, each voxel’s timecourse was finally z-scored (separately

for each run).

Each participant’s anatomical scan was warped into Talairach space using

AFNI’s automated @auto_tlrc procedure. These rigid-body warp parameters were

stored and used later for anatomical masking (see Section 2.5.2) and for generat-

ing classifier importance maps (showing which regions contributed most strongly

to the classifier’s output; see Supplementary Materials).

2.5. fMRI pattern classification methods

All pattern classification analyses were performed using the Princeton MVPA

Toolbox in Matlab (Detre et al., 2006; downloadable from http://www.pni.

princeton.edu/mvpa).

2.5.1. Ridge regression

To decode cognitive state information from fMRI data, we trained a ridge-

regression model (Hastie, Tibshirani, & Friedman, 2001; Hoerl & Kennard, 1970;

for applications of this algorithm to neuroimaging data see, e.g., Newman &

Norman, 2010; Poppenk & Norman, 2012). The ridge regression algorithm learns a

linear mapping between a set of input features (here, voxels) and an outcome

variable (here, the presence of a particular cognitive state, e.g., thinking about

scenes). Like standard multiple linear regression, the ridge-regression algorithm

adjusts feature weights to minimize the squared error between the predicted label

and the correct label. Unlike standard multiple linear regression, ridge regression

also includes an L2 regularization term that biases it to find a solution that

minimizes the sum of the squared feature weights. Ridge regression uses a

parameter (l) that determines the impact of the regularization term.

To set the ridge penalty l, we explored how changing the ridge penalty

affected our ability to classify the functional localizer data (using the cross-

validation procedure described in Section 2.5.4). We found that the function

relating l to cross-validation accuracy was relatively flat across a wide range of l
values (spanning from 0.001 to 50). We selected a l value in the middle of this

range (l¼ 2) and used it for all of our classifier analyses. Note that we did not use

the think/no-think fMRI data in any way while selecting l (otherwise, we would

be vulnerable to concerns about circular analysis when classifying the think/no-

think data; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).

2.5.2. Anatomical masking

Following Kuhl et al. (2011) we applied an anatomical mask composed of

fusiform gyrus and parahippocampal gyrus to the data. The mask was generated

by using AFNI’s TT_Daemon to identify fusiform gyrus and parahippocampal gyrus

bilaterally in Talairach space. These region-specific masks were combined into one

mask (using the ‘‘OR’’ function in AFNI’s 3dcalc) and then converted into each

participant’s native space (at functional resolution) using AFNI’s 3dfractionize

program. Finally, the fusiform-parahippocampal mask was intersected with each

participant’s whole-brain mask using the ‘‘AND’’ function in AFNI’s 3dcalc.

2.5.3. Training the ridge-regression model

We trained a separate ridge-regression model for each of the four categories

(face, scene, car, shoe) based on fMRI data collected during the functional localizer

phase. Specifically, the models were trained on individual scans from this phase

(where each scan was acquired over a 2-s period). For each category, we created a

boxcar regressor indicating when items from that category were onscreen during

the functional localizer. To adjust for the haemodynamic response, we convolved

these boxcar responses with the gamma-variate model of the haemodynamic

response, and then applied a binary threshold (setting the threshold at half the

maximum value in the convolved timecourse). The effect of this procedure was to

shift the regressors forward by three scans (i.e., 6 s in total; McDuff, Frankel, &

Norman, 2009; Polyn et al., 2005).

We then used these shifted regressors as target outputs for the category-

specific ridge-regression models. For example, the face-category model was

trained to give a response of 1 to all of the scans where the shifted face regressor

was equal to 1, and to give a response of 0 to all of the scans where the shifted face

regressor was equal to 0 (i.e., scans where participants were viewing scenes, cars,
and shoes). Scans from the inter-block interval (i.e., scans not labeled as being

related to face, scene, car, or shoe) were not included in the training procedure.

Note that including all four categories in the classifier training procedure forces

the classifier to find aspects of scene processing that discriminate scenes from all

of the other categories, not just faces; likewise, it forces the classifier to find

aspects of face processing that discriminate faces from all of the other categories,

not just scenes. If we only included face and scene scans at training (such that

scenes were present if and only if faces were absent), the classifier might

opportunistically learn to detect scenes based on the absence of face activity,

without learning anything about scenes per se. After the ridge-regression model

has been trained in this way, it can be applied to individual scans (not presented at

training) and it will generate a real-valued estimate of the presence of the relevant

cognitive state (e.g., scene processing) during that scan.

To gain insight into which brain regions were driving classifier performance,

we constructed importance maps for the face and scene classifiers using the

procedure described in McDuff, Frankel, and Norman (2009). This procedure

identifies which voxels were most important in driving the classifier’s output

when each category (e.g., scene) was present during classifier training. The

importance maps are presented in the Supplementary Materials, along with a

detailed description of how the maps were constructed.

2.5.4. Testing the ridge-regression model

In our analyses, we used the ridge-regression model to decode brain activity

during the functional localizer phase and also during the think/no-think phase.

There are three questions that we can ask about overall classifier sensitivity: First,

during the functional localizer, how well can we decode which category partici-

pants are viewing? Second, during think trials, when participants are given a word

cue and asked to retrieve the associated image, how well can we decode the

category of the image? Finally, during no-think trials, when participants are given

a word cue and asked to not retrieve the associated image, can we nonetheless

decode the category of the image?

Note that our primary interest was in decoding face and scene information

(since these were the only categories used on no-think trials). As such, all of the

analyses described below relate to face and scene decoding, not car and shoe

decoding. To decode face and scene activity from the functional localizer phase,

we used a six-fold cross-validation procedure. In each fold, we trained the ridge

regression model on all of the car and shoe blocks plus five out of the six face and

scene blocks. The ridge-regression model was then tested on individual scans from

the ‘‘left out’’ face and scene blocks. To decode face and scene activity on think and

no-think trials, we trained the ridge-regression model on all of the blocks from the

functional localizer phase. For a given think or no-think trial, we wanted to decode

retrieval-related activity elicited by the appearance of the word cue. To accom-

plish this goal, we created a boxcar regressor for the scan when the cue appeared,

shifted the regressor by 3 scans (i.e., 6 s) to account for lag in the haemodynamic

response, and then we applied the trained ridge-regression model to this scan (i.e.,

the fourth scan in the trial). For all of the above training/testing schemes, distinct

sets of scans were used for training and testing, thereby avoiding issues with

circular analysis (Kriegeskorte et al., 2009).

2.6. Evaluating classifier sensitivity

2.6.1. Basic tests of scene-face discrimination

To assess the ridge-regression model’s ability to discriminate between scenes

and faces, we computed the difference in the amount of scene evidence (i.e., the

output of the scene ridge-regression model) and face evidence (i.e., the output of

the face ridge-regression model) on individual scans, and computed how this

scene—face evidence measure varied across scans where participants were proces-

sing scenes vs. faces. Ideally, when participants are either viewing or remembering

scenes, there should be more scene evidence than face evidence, and when participants

are viewing or remembering faces, there should be more face evidence than scene

evidence. We conducted this sensitivity analysis separately for the functional localizer

phase, think trials, and no-think trials.

Specifically, for each of these three phases of the experiment, we computed

the distribution of scene – face evidence scores for scene trials and the distribution

of scene – face evidence scores for face trials, and then we measured the

separation of these distributions using an area-under-the-ROC (AUC) measure.

An AUC score of 0.5 indicates chance levels of discrimination and an AUC score of

1.0 indicates perfect separation of the two distributions (Fawcett, 2006).

2.6.2. Event-related averages

The above sensitivity analyses assess whether the ridge-regression models

show different outputs for faces and scenes, but they do not assess how sensitive

the models are to faces and scenes, considered on their own. It is possible that this

differential sensitivity could be primarily driven by sensitivity to one category and

not the other. This question is crucial because our primary curve-fitting analysis

(described in Section 2.7 below) hinges on being able to detect the precise degree

of scene and face memory activation on individual no-think trials; if it turns out

that we can detect memory retrieval much better for one category than another,

we should focus our analyses on the better-detected category.

http://www.pni.princeton.edu/mvpa
http://www.pni.princeton.edu/mvpa
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To address this issue, we plotted event-related averages of face and scene

classifier evidence for the first seven scans of think and no-think trials (starting

with the scan when the cue word appeared), as a function of whether the picture

associated with the cue was a face or a scene. We assessed sensitivity by

examining the difference in classifier evidence for the ‘‘correct’’ category vs. the

‘‘incorrect’’ category; this measure can be computed separately for face-associate

and scene-associate trials.

Another benefit of looking at both correct-category and incorrect-category

classifier evidence is that we could assess whether there were nonspecific factors

that affected these two values in tandem (for example, increased task engagement

could boost both face and scene classifier evidence at the same time). Naively, one

might think that the best way to track memory retrieval is to look at correct-

category classifier evidence only (e.g., to track memory retrieval on scene trials,

just look at scene classifier evidence). However, to the extent that there were

common, non-memory-related factors that affected face and scene classifier evidence

in tandem, it might be more effective to track memory retrieval by looking at the

difference in correct-category vs. incorrect-category classifier evidence – taking the

difference between these classifier evidence values should cancel out these common,

non-memory-related influences, thereby giving us a more sensitive measure of

memory retrieval strength.
3 P-CIT is pronounced ‘‘piece it’’, as in ‘‘you take the curve and piece it

together’’.
4 Running the curve-fitting algorithm on our no-think dataset takes approxi-

mately 10 h on an Intel Xeon x5570 2.93 GHz CPU and requires 8 GB RAM. The

nonparametric statistics described in Section 2.7.6 take even longer to compute

because they involve re-running the algorithm multiple times. For example,

running 1000 iterations of our bootstrap procedure takes 10�1000¼10 000 h of

computer time. The only way to compute these statistics in a manageable amount

of time is to divide up the workload across multiple nodes on a computer cluster.
5 We sampled parameters at a 0.0001 resolution; the curve volume (i.e., the

possible number of curves, including both theory-consistent and theory-

inconsistent curves) at this resolution was 1.6006eþ25. To compute the volume

of curve space that was theory-consistent, we divided the number of possible

theory-consistent curves by the total number of possible curves.
2.7. Estimating the plasticity curve

The main goal of our experiment was to characterize how memory activation

during the no-think phase affected participants’ ability to subsequently retrieve

that memory on the final test. This relationship can be expressed in the form of a

plasticity curve that relates memory activation (as measured using our fMRI ridge-

regression procedure) on the x-axis to memory strengthening/weakening on the y-

axis. Fig. 1 depicts an idealized plasticity curve. We wanted to use the neural and

behavioral data collected during this experiment to estimate the curve’s actual

shape, and to assess how well it fit with the nonmonotonic plasticity hypothesis

that is depicted in Fig. 1. This section contains a high-level overview of our

procedure for estimating the shape of the plasticity curve. Mathematical details

are provided in the Supplementary Materials. The Supplementary Materials also

contain the results of simulated-data analyses that establish the sensitivity and

specificity of our curve-fitting procedure.

The curve-fitting procedure can be understood in the context of Bayesian

inference. For each word-picture pair that we included in the experiment, we

collected neural measurements (using the classifier) of how much the associate

activated during the no-think phase, and we also collected a final behavioral

measurement of whether the associate was remembered correctly on the final

test. Our goal was to take these neural and behavioral measurements and infer a

posterior probability distribution over plasticity curves. That is, given the neural

and behavioral measurements, which curves were most probable?

The desired posterior probability distribution, P(curve 9 behavioral data, neural

data), is proportional to the likelihood of the data given each curve: P(behavioral

data 9 curve, neural data), multiplied by the prior probability of the curve: P(curve).

Put another way: Computing the posterior distribution involves searching over the

space of curves and evaluating the likelihood of each curve—how well does the curve

(in conjunction with the neural data) predict the behavioral memory outcomes? Note

that we used a uniform prior that (within the space of curves that we considered) did

not favor one curve over another; as such, the relative ranking of curves in the

posterior distribution was driven by the likelihood term.

It is obviously infeasible to compute the likelihood term for all possible curves.

To make this tractable, we took the following steps: First, we defined a

parameterized family of curves that allowed us to describe the plasticity curve

using six numbers (thereby moving us into six-dimensional space instead of

infinite-dimensional space). We also defined a concrete set of criteria that allowed

us to determine (in a binary fashion) for each curve whether it was consistent or

inconsistent with the nonmonotonic plasticity hypothesis, based on these six

curve parameters. Next, since the six-dimensional curve space was still too large

to search exhaustively, we used an adaptive importance-sampling procedure

(MacKay, 2003). This procedure allowed us to construct an approximate posterior

probability distribution while sampling only a small fraction of the possible curves

in the six-dimensional curve space. The curve parameterization, our criteria for

theory-consistency, and our method for generating the initial set of samples are

described in Section 2.7.1.

Section 2.7.2 describes how we scaled our classifier measure of memory

activation to fit within the 0-to-1 range required by our curve parameterization.

For each sampled curve, we assigned an importance weight to the curve indicating

the probability of that curve given the neural and behavioral data; this procedure

is described in Section 2.7.3.

Next, we generated a new set of samples by taking the best (i.e., most

probable) curves from the previous generation and distorting them slightly (see

Section 2.7.4). From this point forward, we iterated between assigning importance

weights to samples and generating new samples based on these importance

weights. The collection of weighted samples generated by this process can be

interpreted as an approximate posterior probability distribution over curves.
We used this collection of weighted samples to generate a mean predicted

curve and also credible intervals indicating the spread of the distribution around

this mean curve (Gelman, Carlin, Stern, & Rubin, 2004). We also computed the

overall posterior probability that the curve was consistent with our theory. These

procedures are described in more detail in Section 2.7.5.

We used nonparametric statistical tests to evaluate the reliability of our results

(see Section 2.7.6). Crucially, we did not collect enough data from individual

participants to estimate the shape of the curve on a participant-by-participant basis.

To get around this limit, we pooled trials from all participants, treating them as if they

came from a single ‘‘megaparticipant’’. Despite our use of this megaparticipant

design, we were still able to estimate the across-participant reliability of our results

by means of a bootstrap resampling procedure.

In the following sections, we describe the individual steps of the curve-fitting

procedure in more detail. To preserve the readability of this section, we describe

the methods in narrative form here, without equations. We provide a mathema-

tically detailed treatment of the curve-fitting procedure in the Supplementary

Materials. For researchers interested in replicating and/or extending our results,

we have also prepared a fully documented, downloadable toolbox containing our

curve-fitting software routines (in Matlab) and the data files that we used to

generate the curves shown in the Results section. The toolbox is called P-CIT

(‘‘Probabilistic Curve Induction and Testing’’) and it can be downloaded from

http://code.google.com/p/p-cit-toolbox/.3,4
2.7.1. Curve parameterization, theory consistency, and initial sampling

Curve parameterization: Each plasticity curve specifies a relationship between

our classifier measure of memory activation (which was scaled between 0 and 1;

see Section 2.7.2 below for discussion of the scaling procedure) and memory

strengthening/weakening, where strengthening is indicated by positive y-axis

values and weakening is indicated by negative y axis values. The y-axis was

bounded between �1 and 1 (note that these are arbitrary units – the absolute

value of the y-axis coordinate does not directly correspond to any real-world

performance measure).

For our importance-sampling procedure, we parameterized the plasticity

curves in a piecewise linear fashion, with six parameters: y1, y2, y3, y4, x1, and

x2. The parameters are illustrated in Fig. 3. Each curve was defined by the

following four points: the leftmost point (0, y1); two inner points (x1, y2) and

(x2, y3), where x1 was constrained to be less then x2; and the rightmost point

(1, y4). This parameterization is capable of generating a wide range of curves, some

of which fit with the nonmonotonic plasticity hypothesis, and some of which

do not.

Theory consistency: We defined a formal set of criteria for labeling curves as

theory consistent (i.e., consistent with the nonmonotonic plasticity hypothesis) or

theory inconsistent. In words: A curve was considered to be theory consistent if –

moving from left to right – one of the inner points dipped below the leftmost point

(and below zero), and then the curve subsequently rose above zero. These criteria

ensured that curves labeled theory consistent all had the characteristic ‘‘dip’’

shown in Fig. 1. Given that there is disagreement among theories regarding the

shape of the right-hand part of the curve (i.e., does the curve monotonically

increase after the dip, or does it rise up then fall back down again; see Footnote 2)

we still considered curves to be theory consistent if they met the aforementioned

criteria and then (after rising above zero) they showed a decrease from their

maximum height. See the Supplementary Materials for additional details on how

we assessed theory consistency.

Initial sampling: To seed the importance-sampling procedure, we generated

100 000 curves by sampling uniformly from curve space. That is, for each sampled

curve, its y1, y2, y3, and y4 parameters were sampled uniformly from �1 to 1, and

its two x parameters were sampled uniformly from 0 to 1. The smaller one of the

sampled x parameters was used as the x1 coordinate and the larger x parameter

was used as the x2 coordinate (this ensured that the x1 ox2 criterion was met).

Note that, if we consider the entire space of curves that can be generated using

this parameterization, less than half of the total volume of curve space (38.5%, to

be precise) is theory-consistent.5 As such, sampling uniformly at the outset of the

curve-fitting procedure slightly biased the algorithm toward theory-inconsistent

http://code.google.com/p/p-cit-toolbox/
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curves. In practice, however, this initial sampling bias had no effect on the output

of the curve-fitting procedure—it was swamped by the effect of subsequent curve

sampling iterations (which focused on high-likelihood regions of the curve space,

as described below in Section 2.7.4).

2.7.2. Scaling the classifier evidence

For the purpose of the curve-fitting algorithm, we rescaled our classifier

measure of memory retrieval (which were will henceforth refer to as classifier
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shows illustrative data, not actual data from the study).
evidence) to fit between zero and one. To enact this rescaling, we first took all of

the classifier evidence values from no-think trials (pooling across items and

participants; that gives us 26 participants�8 items/participant�12 trials/item

measurements) and computed the standard deviation of this pooled distribution.

We then eliminated all measurements that fell more than three standard

deviations above or below the mean. After dropping outliers, we linearly rescaled

the classifier evidence values so that the maximum evidence value equaled one

and the minimum evidence value equaled zero.
2.7.3. Computing importance weights for individual curves

For each of the sampled curves, we computed an importance weight that

reflected the probability of the curve given the neural and behavioral data. The

procedure for computing the importance weight for a particular curve can be

broken down into four steps: First, we used the measured classifier evidence

scores and the curve shape to compute the predicted net effect of the no-think

phase on memory for each of the pairs assigned to the no-think condition (i.e.,

based on the neural evidence scores for a particular item and the curve shape, did

we predict that the no-think phase would lead to an increment or decrement in

subsequent memory for the pair, and if so, by how much?). Second, we compiled a

table that listed, for each pair assigned to the no-think condition (amalgamating

across all participants), both the predicted net effect of the no-think phase, and

also the actual memory outcome (i.e., correctly remembered or not). Third, we fed

this table into a logistic-regression model to measure how well the net-effect

scores (generated based on this particular curve, and neural data) predicted

behavioral memory outcomes. We summarized the goodness-of-fit of the logistic-

regression model using a likelihood score: How probable were the behavioral

outcomes given this curve and the neural data? Fourth, we converted the likelihood

scores for the curves into importance weights that indicated the probability of each

curve, given the data. These four steps are illustrated in Fig. 4 and described in

detail below.

Step 1: Computing the predicted net effect of the no-think phase on subsequent

memory for an item. For each pair that was assigned to the no-think condition, the

cue word for that pair appeared 12 separate times during the think/no-think phase
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(along with the instruction to not think of the associate). For each of these 12

no-think trials, we collected a classifier evidence value indicating the strength of

activation of the associated memory. Each of these 12 no-think trials was a

separate learning opportunity—that is, each one of these trials could have exerted

its own effect on subsequent memory. To compute the predicted effect of these 12

no-think trials (conditionalized on a particular shape of the plasticity curve), we

looked up the 12 classifier evidence values for that item on the plasticity curve.

Fig. 4a illustrates this process: For a given classifier evidence value, we used the

curve to predict how that trial would affect subsequent memory. The 12 blue

dots in the figure illustrate (hypothetical) classifier evidence values observed for a

given item across 12 no-think trials; red arrows in the figure indicate a predicted

decrease in accessibility; green arrows indicate a predicted increase in accessi-

bility. One important question is how to combine the predicted effects of the 12

trials to get an overall ‘‘net effect’’ prediction for each item. For this analysis, we

chose the simplest option, which was to assume that these learning effects

combined in a linear fashion, such that the net effect of the 12 no-think trials

for an item was the sum of the effects of each individual no-think trial. The net

effect is represented in the figure by the large, dark-red arrow on the right side of

the plot (the faded arrows next to the dark-red arrow show how the net effect was

obtained by summing the individual-trial effects).

Step 2: Compiling the table of predicted net effects and behavioral memory

outcomes. We used the procedure described in the previous subsection to get, for

each item, a predicted net effect of the no-think procedure on subsequent

memory. We also knew, for each item, whether or not it was remembered

correctly on the final memory test (1¼correct memory, 0¼ incorrect memory).

We used this information to compile a table that listed, for each no-think pair

from each participant, the predicted net effect of the no-think procedure and the

final memory outcome (see Fig. 4b). Across all participants, there were 8 no-think

pairs/participant�26 participants¼208 no-think items; as such, the full table

contained 208 rows corresponding to no-think items.

In addition to the 208 rows corresponding to no-think items, we also added

rows corresponding to baseline items. Because baseline items did not appear

during the think/no-think phase, the predicted net effect of the think/no-think

phase was zero for these items. Thus, for each baseline item, we added a row with

a zero predicted net effect, along with a binary value indicating whether or not

that baseline item was remembered correctly on the final test.6 Across all

participants, there were 10 baseline pairs/participant�26 participants¼260

baseline items; as such, the final table included 468 rows (¼208 no-think items

and 260 baseline items). Our detailed rationale for including the baseline items in

the table is discussed in the Supplementary Materials. In short: Including the

baseline items did not affect our estimate of the shape of the plasticity curve (i.e.,

was there a dip) but it did help to anchor our estimate of the vertical position of

the curve (i.e., the mean value of the curve on the strengthening-weakening

dimension).

Step 3: Evaluating the fit between predicted net effects and behavioral memory

outcomes. The next step in the analysis procedure was to use the data in the

table (described above) to evaluate how well the ‘‘predicted net effect’’ values

corresponded to actual memory outcomes. Intuitively, if the curve being con-

sidered accurately describes the relationship between memory activation and

plasticity, then net-effect values generated using that curve should be strongly

related to memory outcomes (i.e., no-think items with larger/more positive net

effects should be remembered better than no-think items with smaller/more

negative net effects). To assess the strength of this relationship, we fit a logistic-

regression model to the data in the table—that is, we used the real-valued net-

effect scores to predict binary memory outcomes. The logistic regression model

had two parameters: b0 (the intercept) and b1 (the slope). This step of the process

is illustrated in Fig. 4c: Each dot in the figure corresponds to an item (i.e., a row of

the table), and the blue curve is the fitted logistic function.

For reasons of mathematical simplicity and computational efficiency, we used a

model where b0 and b1 were shared across all of the samples (curves) being

considered; thus, rather than picking the b values that optimized the logistic

regression fit for each individual curve, we chose b parameters that optimized the

fit across the entire distribution of samples (our method is three times faster than

fitting a different set of b values to each sampled curve). The specific procedure that

we used to accomplish this goal is described in the Supplementary Materials. After

selecting the b values, we summarized the goodness-of-fit of the logistic regression

using a likelihood value that indicated the probability of the observed memory

outcomes under the fitted model—bigger likelihood values indicated better fits.
6 To be clear: assigning a net effect value of zero to baseline items is different

from assigning a classifier evidence value of zero to these items. Net effect¼0

(appropriately) indicates that the item did not appear during the think/no-think

phase. By contrast, assigning a classifier evidence value of zero is equivalent to

saying that the item did appear during the think/no-think phase and elicited a

classifier evidence value of zero (i.e., minimal evidence). Since the plasticity curves

we considered were not constrained to include the point (0, 0), a classifier

evidence value of zero could conceivably have led to a predicted net effect that

was different from zero.
Step 4: Computing importance weights. The final step in the importance-

sampling procedure was to compute (for each sampled curve) an importance

weight that reflected the probability of that curve, given the data. For the initial

set of samples (which were generated by sampling uniformly from the curve

space), the importance weight for each curve was equal to the likelihood value

computed in the previous step. For subsequent sets of samples (which were

generated by distorting previously sampled curves, instead of via uniform

sampling; see Section 2.7.4 below), the formula for computing importance

weights was slightly different (see the Supplementary Materials), but it still was

primarily driven by the likelihood values computed in the previous step. After the

importance weights were computed for each curve, we renormalized the impor-

tance weights so they summed to one—this property allowed us to interpret the

importance weight for a given curve as the (approximate) probability of that

curve. This step of the process is illustrated in Fig. 4d. In the figure, each circle

corresponds to a sampled curve (with a particular set of parameters), and the height

of the circle indicates the magnitude of the importance weight for that curve. In the

actual analysis, the curves were located in a six-dimensional parameter space;

here, for expository purposes, we are only showing one dimension of the parameter

space.

2.7.4. Iterative resampling

After assigning importance weights to the 100 000 samples (using the

procedure outlined above), the next step in the curve estimation process was to

generate a new set of samples, according to the following procedure: First, we

sampled (with replacement) from the existing set of curves according to their

importance weights, such that curves with large importance weights were

selected more often. Second, for each (re-)sampled curve, we slightly distorted

the parameters of the curve. These two steps were repeated 100 000 times so as to

generate 100 000 new samples. This procedure had the effect of concentrating the

samples in regions of curve parameter space that were associated with large

importance weights.

After generating these new samples, we alternated between (1) assigning

importance weights to these new samples, and (2) resampling based on the new

importance weights. In total, we ran the procedure for 20 iterations of generating

samples and then assigning importance weights (we found empirically that the

goodness-of-fit of the model tended to converge after 10-to-15 iterations; see the

Supplementary Materials for details). The resulting collection of weighted samples

(after 20 generations of the adaptive sampling procedure) can be interpreted as an

approximate posterior probability distribution over curves. That is, regions of

curve parameter space containing samples with high importance weights were

relatively probable (given the neural and behavioral data), and regions containing

samples with low importance weights were relatively improbable.

2.7.5. Computing mean curves, credible intervals, and theory consistency

Mean curves and credible intervals: To generate a mean predicted curve, we

averaged together the sampled curves in the final population of samples, weighted

by their importance values. We also computed credible intervals to indicate the

spread of the posterior probability distribution around the mean curve. We did

this by evaluating the final set of sampled curves at regular intervals along the x

(i.e., memory activation) axis. For each x coordinate, we computed the 90%

credible interval by finding the range of y values that contained the middle 90%

of the curve probability mass.7

Evaluating theory consistency: In addition to estimating the curve shape, we

also estimated the overall posterior probability that the curve was theory

consistent; henceforth, we refer to this value as P(theory consistent). For each

sample in the final set of weighted samples, we labeled that sample as theory

consistent or theory inconsistent according to the criteria discussed earlier (in Section

2.7.1). P(theory consistent) is equivalent to the fraction of the posterior probability

mass associated with theory-consistent (vs. theory-inconsistent) samples; to com-

pute this value, we simply summed together the importance weights associated with

theory-consistent samples. This number provides an efficient summary of how well

the data supported our hypothesis.

2.7.6. Nonparametric statistical tests

To evaluate our curve-fitting results, we ran two distinct nonparametric

statistical tests.

Estimating the probability that our results could have arisen due to chance: The

first nonparametric statistical test estimated the probability that our results could
7 Specifically, for each x coordinate, we rank-ordered the curves by their y

value at that x coordinate. We then proceeded upward through the samples

(starting with the curve with the smallest y value), computing the cumulative sum

of the importance weights for these samples. The y value where the cumulative

sum reached 0.05 defined the bottom of the 90% credible interval and the y value

where the cumulative sum reached 0.95 defined the top of the 90% credible

interval. This method ensured that 5% of the weighted sample mass was located

below the credible interval and 5% of the weighted sample mass was located

above the credible interval.
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each panel, think and no-think memory performance were compared to baseline using an across-subjects paired t-test.

8 Other think/no-think studies have failed to find a memory benefit for think

items compared to baseline items (see, e.g., Paz-Alonso, Ghetti, Matlen, Anderson,

& Bunge, 2009). In our study, the lack of a benefit for think items may be

attributable to imperfect recollection of associated pictures on think trials. If

participants do not imagine the scene perfectly accurately, the memory trace of

this distorted image may interfere with subsequent memory for the original

image.
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have arisen by chance: i.e., what is the probability of obtaining a particular value

of P(theory consistent), under the null hypothesis that no relationship was present

between the neural and behavioral data?

To answer this question, we used a permutation test procedure where we

scrambled the trial-by-trial relationship between neural measurements and

memory performance on the final test. Specifically, we took the data table

described above in Section 2.7.3 and Fig. 4b (with columns for predicted net

effects and behavioral memory outcomes) and we permuted the memory outcome

column within each condition (no think, baseline) within each participant. This

permutation instantiated the null hypothesis that there was no real relationship

between the predictions in the first column (which were derived from neural data)

and the behavioral data in the second column. Doing the permutation in this

manner ensured that the overall level of memory accuracy within each condition

within each participant was not affected by the permutation—the only thing that

was affected was the relationship between neural data and behavior.

We permuted the data 1000 times; for each permutation, we re-ran the entire

adaptive importance-sampling procedure and re-computed P(theory consistent).

The resulting 1000 P(theory consistent) values served as an empirical null

distribution for P(theory consistent)—i.e., this is the distribution we would expect

if there were no real relationship between brain activity and behavior. By

measuring where our actual value of P(theory consistent) fell on this distribution,

we were able to compute the probability of getting this value or higher under the

null hypothesis. For example, if our actual value of P(theory consistent) exceeded

95 percent of the null distribution, this would tell us that the probability of

obtaining our result due to chance was less than 0.05.

Estimating the across-subject reliability of curve-fitting results: As noted above, we did

not collect enough data from individual participants to do curve-fitting on a

participant-by-participant basis; rather, we pooled trials from all the participants

together into a single ‘‘megaparticipant’’ data table and then ran the curve-fitting

analysis. As has been discussed extensively in the fMRI literature, this kind of fixed-

effects design (where data are pooled across participants) permits inferences about the

particular set of participants that we studied but not about the population as a whole

(Holmes & Friston, 1998; Woods, 1996). The permutation test described in the

preceding section asks the question: What is the probability of obtaining a P(theory

consistent) value this large (or larger) in this particular set of participants under the null

hypothesis? Crucially, the permutation test does not speak to the across-subject

reliability of our results: i.e., what is the probability that we would obtain evidence in

favor of theory-consistency if we re-ran the experiment in a new set of participants

sampled from the same population? In a fixed-effects analysis like the permutation test

described above, there is always the possibility that results could be driven by a small

subset of unrepresentative participants.

To estimate the across-subject reliability of our results, we ran a bootstrap

resampling analysis (Efron & Tibshirani, 1986). In our basic curve-fitting analysis,

we assembled our data table by concatenating the data rows from all 26

participants: (8 no-think items þ 10 baseline items per participant)�26

participants¼468 rows in total. In the bootstrap analysis, we re-created the data

table by sampling from the set of 26 participants 26 times with replacement and

then concatenating the data rows from the resampled participants. The net result

was a data table that was the same size as the original, where the table was

composed of a different mix of participants than the original matrix. We will refer

to this resampled set of 26 participants as a pseudoreplication of the original

dataset. After creating the resampled data table, we ran our curve estimation

procedure and estimated P(theory consistent).

We carried out this procedure – resampling with replacement to create a

pseudoreplication of the original dataset, then recomputing P(theory consistent) –

1000 times. Intuitively, if our results were reliable across participants, then we would

hope that these pseudoreplications would also show strong evidence for theory

consistency. To quantitatively estimate the across-subject reliability of our results, we
computed the fraction of the pseudoreplications where P(theory consistent) was

above 0.5 (indicating a balance of evidence in favor of theory consistency).
3. Results

3.1. Behavioral results

The left-hand panel of Fig. 5 shows the average level of
memory performance on the final test (indexed using our ‘‘both
correct’’ measure: correct memory for the category and correct
recognition of the specific item) for items assigned to the baseline,
no-think, and think conditions. Numerically, no-think memory
performance was below baseline and think memory performance
was above baseline; however, neither of these differences
approached significance on an across-subjects paired t-test. The
same pattern was observed when we separately analyzed face
trials (middle panel) and scene trials (right-hand panel).8

3.2. fMRI results

3.2.1. Basic sensitivity analyses

Before launching into our curve-fitting analyses, we wanted to
assess how sensitive the classifier was (overall) to scene and face
information in different phases of the experiment. Fig. 6 shows
how well the difference in scene and face classifier evidence

discriminated between face trials and scene trials in the func-
tional localizer phase (where participants viewed faces and
scenes), think trials (where participants were trying to remember
picture associates, some of which were faces and some of which
were scenes), and no-think trials (where participants were trying
not to remember picture associates, some of which were faces
and some of which were scenes). The figure shows that, not
surprisingly, classifier sensitivity to the face/scene distinction was
highest for the functional localizer, next-highest for think trials,
and lowest for no-think trials. Crucially, classifier sensitivity was
significantly above chance in all three conditions, including the
no-think condition; that is, we were able to decode (with above-
chance sensitivity) the category of the picture associate, even on
trials where participants were specifically instructed not to
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retrieve the associate. The fact that classifier sensitivity was above
chance in the no-think condition licensed us to explore (in our
curve-fitting analyses, described below) how classifier evidence
on no-think trials related to memory performance on the
final test.
9 We have observed the same general pattern shown in Fig. 7a nonspecific

decrease in classifier evidence values at the start of the trial, followed by an

increase—in our other classifier studies (e.g., McDuff, Frankel, & Norman, 2009). In

the McDuff et al. study, like this one, we corrected for these nonspecific effects by

subtracting one classifier evidence value from the other.
10 Note that, while the curve-fitting algorithm is stochastic (i.e., it incorpo-

rates random sampling), the curve-fitting algorithm yielded results that were

highly consistent across multiple runs of the algorithm. For all of the curve-fitting

results reported here, we ran the algorithm multiple times and found that

P(theory consistent) values differed by at most 0.01 across runs.
11 As noted earlier, the space of theory-consistent curves can be subdivided

into (a) curves that monotonically increase after dipping below zero, and

(b) curves that increase above zero after the dip (reaching a maximum value)

and then decrease below this maximum value. For the scene analysis, 58% of the

theory-consistent probability mass fell into the former category, and the remain-

ing 42% fell into the latter category.
3.2.2. Event-related averages

Fig. 7 shows average face and scene classifier evidence for the
first seven scans of think and nothink trials, as a function of
whether the associate was a scene or a face. Each scan lasted 2 s,
and scan 1 corresponds to the onset of the cue word. In addition
to showing face and scene classifier evidence, the figure also
shows the difference between classifier evidence for the ‘‘correct’’
category (i.e., the category of the associated memory) and the
‘‘incorrect’’ category. For each time point in each condition, we
compared this ‘‘correct - incorrect classifier difference’’ measure
to zero using an across-subjects t-test.

For think trials, classifier evidence for the correct category rose
above classifier evidence for the incorrect category for both faces
and scenes. For both categories, this difference was numerically
maximal (and statistically significant, across participants) at scan
4, which is the scan that we used to read out memory retrieval
strength for our curve-fitting analyses (see Section 2.5.4).

For no-think trials, the difference between correct-category
and incorrect-category classifier evidence rose significantly above
zero for scenes (as with scene think trials, the difference was
numerically maximal and statistically significant at scan 4).
However, there was no apparent difference between correct-
category and incorrect-category classifier evidence on no-think
face trials. Overall, these results suggest that we were receiving a
useful memory signal on scene but possibly not on face no-think
trials, and thus it might be useful to focus our curve-fitting
analysis on scene no-think trials. We return to this point later
in the Results section and in the Discussion section.

The event-related averages also show that there was consider-
able shared variance between correct-category and incorrect-
category classifier evidence over the course of a trial; the memory
effect was a small difference riding on top of this nonspecific
effect. Based on this information, we opted to use the difference in
correct vs. incorrect category evidence as our trial-by-trial mea-
sure of memory retrieval in our curve-fitting analyses, as opposed
to looking just at the classifier evidence corresponding to the
correct category. Looking at the difference should reduce the
influence of non-memory-specific factors that affect both correct-
category and incorrect-category classifier evidence values in
tandem.9

3.2.3. Curve-fitting analyses

Fig. 8 shows the results of our curve-fitting procedure when it
was applied to no-think data from all no-think trials (mixing
together scene trials and face trials). The posterior probability of
theory-consistency, P(theory consistent), was computed to be
0.51 in this analysis, indicating that the algorithm was almost
perfectly uncertain about whether the underlying curve was
theory-consistent.10

As stated above (see Fig. 7), classifier evidence was reliably
greater for scenes than faces on scene no-think trials, but – on
face no-think trials – scene and face classifier evidence were
indistinguishable from one another on average. One possible
explanation for our poor initial curve-fitting results is that the
classifier was not providing a useful index of memory retrieval on
face trials, and the lack of good ‘‘signal’’ on these face trials was
preventing the curve-fitting algorithm from uncovering the true
underlying shape of the curve.

To address this issue, we ran the curve-fitting analysis sepa-
rately on scene and face trials—if face trials were dragging down
the overall P(theory consistent) value, then the results should be
better when we focus just on scene trials. The results are shown
in Fig. 9. For faces, P(theory consistent) was low (0.40), but for
scenes P(theory consistent) was substantially higher (0.76) and
the recovered curve showed a pronounced U shape.11

Given that the scene results were more promising, we asked:
What are the odds of getting a result this good due to chance? To test
this, we ran a nonparametric permutation test (see Section 2.7.6).
This permutation analysis yielded an empirical null distribution of
P(theory consistent) values—this is the distribution that we would
expect to observe if there were no real relationship between brain
activity and behavior. This empirical null distribution is shown in
Fig. 10, along with the actual P(theory consistent) value. Out of 1000
samples in the null distribution, only six samples from the null
showed a P(theory consistent) value greater than the actual P(theory
consistent) value of 0.76. This finding suggests that it is very unlikely
that we would have obtained a theory-consistency value this high
due to chance (po0:01).

Readers will note that the mean of the computed null distribu-
tion was above 0.5, indicating a potential bias in the null toward
theory consistency; this is especially surprising, given the fact –
noted earlier – that theory-consistent curves occupy less than half of
the total curve volume: 38.5%. This property of the null distribution
is a consequence of our use of a very conservative permutation-



M
ea

n 
cl

as
si

fie
r e

vi
de

nc
e

Time (scans)

No-Think, Face Trials

1 2 3 4 5 6 7

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

face scene dif

Time (scans)

No-Think, Scene Trials

1 2 3 4 5 6 7

face scene dif

M
ea

n 
cl

as
si

fie
r e

vi
de

nc
e

Think, Face Trials

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

face scene dif

Think, Scene Trials

face scene dif

Fig. 7. Event-related averages of face and scene classifier evidence for the first seven scans of think and no-think trials, split by whether the associate was a face (left side)

or scene (right side). Each scan lasted 2 s. Dif¼difference between classifier evidence for the correct vs. incorrect category. The ribbon around the dif line indicates the SEM.

* indicates that dif was significantly greater than zero at that time point according to an across-subjects t-test, po0:05.

C
ha

ng
e 

in
 m

em
or

y 
st

re
ng

th

Activation

All No-Think Trials

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8. Results from our curve-fitting procedure, applied to data from all no-think

trials (regardless of the category of the associated image). The dark line in the

figure indicates the mean of the posterior distribution over curves, and the gray

ribbon indicates the 90% credible interval (i.e., 90% of the probability mass is

contained within the gray ribbon).

12 When we ran a less conservative scramble test (permuting the entire

behavioral memory outcome column at once, instead of permuting it within each

condition/participant combination) the mean of the computed null distribution

was 0.41.
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testing procedure. As mentioned in Section 2.7.6, we permuted
the behavioral memory outcome column within each condition
(no think, baseline) within each participant, thereby ensuring that
the overall level of memory performance within each condition
within each participant was not affected by the permutation.
A drawback of this procedure is that, if all of the behavioral memory
outcomes within a participant/condition combination are the same
(e.g., a particular participant correctly remembered all no-think
items), then the permutation procedure will not change the data
for that participant/condition. If the data do not change, this has the
effect of pulling the null distribution toward the real data, thereby
making it harder to obtain a significant difference between the real
data and the null distribution. The fact that we obtained a highly
significant effect despite this issue testifies to the strength of the
effect.12

As noted in the Section 2.7.6, the permutation analysis permits
inferences about the particular set of participants that we studied
but not the population as a whole. To estimate the across-subject
reliability of our results, we ran a bootstrap resampling analysis.
For this analysis, we ran 1000 pseudoreplications of the experi-
ment by sampling with replacement from our pool of 26 partici-
pants. Fig. 11 shows the distribution of theory-consistency values
that we obtained across the 1000 pseudoreplications. Crucially,
we found that 95% (947 out of 1000) of the pseudoreplications
showed theory-consistency values above 0.5 (indicating a balance
of evidence in favor of our theory). These results suggest that, if
we re-ran the experiment with new participants sampled from
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the same population, the odds are very high that we would obtain
evidence consistent with our theory.
4. Discussion

By applying pattern classifiers to fMRI data, we were able to derive
a trial-by-trial readout of memory retrieval on no-think trials. We
used this readout of the neural activity to predict subsequent memory
for no-think items, and we found that the relationship between
activation and subsequent memory was nonmonotonic for scene
trials: Moderate activity of no-think scenes was associated with
subsequent forgetting, but higher and lower levels of scene activity
were not associated with forgetting (for discussion of scene/face
differences see Section 4.3 below). While there have been many other
fMRI studies of the think/no-think paradigm (Anderson et al., 2004;
Butler & James, 2010; Depue et al., 2007; Depue, Burgess, Willcutt,
Ruzic, & Banich, 2010; Levy & Anderson, 2012), ours is the first to use
pattern classifiers to track memory activation, and it is the first to
look for (and find) a nonmonotonic relationship between memory
activation and learning.
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4.1. Related results

The findings from this study converge with other results from
our lab showing a relationship between moderate levels of brain
activity (as measured by a classifier) and subsequently reduced
performance. Apart from the present study, we have completed
two experiments showing this pattern: a priming study (Newman
& Norman, 2010) and a study looking at the effects of switching
items into and out of working memory (Lewis-Peacock & Norman,
2012); both of these studies are briefly described below.

In the Newman and Norman (2010) priming study, partici-
pants were presented with two stimuli at once (e.g., a red-tinted
face and a grayscale shoe) and they were asked to attend to the
red-tinted stimulus while ignoring the grayscale stimulus. On a
subset of trials (ignored repetition trials), participants were then
asked to respond to the stimulus that they just ignored. Based on
the nonmonotonic plasticity hypothesis, Newman and Norman
(2010) predicted that the effect of ignoring the grayscale dis-
tractor on subsequent reaction time to that item would be
U-shaped: Moderate levels of distractor processing should lead
to weakening of the representation and thus slower responding (a
negative priming effect; Tipper, 1985), whereas higher levels of
distractor processing should lead to strengthening of the representa-
tion and thus faster responding (a positive priming effect). To test this
prediction, Newman and Norman (2010) used category-specific
pattern classifiers, applied to EEG data, to measure – on a trial-by-
trial basis – the degree to which participants were processing the
to-be-ignored stimulus during the initial display (e.g., if the distractor
was a house, we would use the house classifier to track distractor
processing). As predicted, Newman and Norman (2010) found a
U-shaped relationship between distractor processing (as measured
by the classifier) and subsequent reaction time: Low levels of
distractor processing did not result in priming; moderate distractor
processing led to a robust negative priming effect; and higher levels
of distractor processing led to a (non-significant) hint of positive
priming. Importantly, the overall difference in reaction time between
ignored repetition trials and control trials (aggregating across all
trials) was not significant – as in our think-no think experiment, clear
evidence for inhibition only emerged when we used a pattern
classifier to identify trials with moderate activation.

In the Lewis-Peacock and Norman (2012) study, we explored
the long-term consequences of unloading items from working
memory. When an item goes from being strongly active in
working memory to being inactive, it necessarily has to pass
through the ‘‘moderately active’’ zone. If, for whatever reason, a
memory happens to linger in this moderately active zone while it
is being unloaded from working memory, then – according to the
nonmonotonic plasticity hypothesis—the memory will be wea-
kened, making it harder to retrieve in the future. To test this
prediction, we used a working memory switching paradigm. At
the start of each trial, a face and a scene were briefly presented,
followed by a delay. On 2

3 of the trials, participants were given a
match-to-sample test for the scene at the end of the delay period.
However, on the remaining 1/3 of the trials, the scene test was
replaced by a switch cue instructing the participants that (after
another delay) they would be tested on the face, not the scene;
based on prior work, we hypothesized that the switch cue would
result in participants loading the face into working memory and
unloading the scene from working memory (Lewis-Peacock &
Postle, 2012). Finally, at the end of the experiment, we gave
participants a surprise memory test for the scenes that they
viewed on switch trials – our main interest was in relating the
dynamics of unloading scenes from working memory (during
switch trials) to recognition memory for those scenes on the final
test. We used a classifier to measure scene activity during switch
trials, and we found that lingering activation of scene
representations after the switch cue was associated with worse
subsequent memory for those scenes. This result is somewhat
counterintuitive (in the sense that more scene activation was
associated with worse subsequent memory) but it fits with our
theory of learning, which posits that sustained moderate (vs. low)
activation can damage a memory.

It is worth noting that the think/no-think study, the Newman
and Norman (2010) negative-priming study, and the Lewis-Peacock
and Norman (2012) working-memory-switching study probed
memory in very different ways: The think/no-think study tested
memory for intentionally studied paired-associates from long-term
memory; the Newman and Norman (2010) study looked at short-
term reaction-time priming effects; and the Lewis-Peacock and
Norman (2012) study looked at recognition memory for individual
scenes after incidental study. The fact that all three paradigms
showed a similar pattern fits with the idea that nonmonotonic
plasticity is a general principle of learning that applies across
multiple time scales and dependent measures. In ongoing work,
we are looking for nonmonotonic effects across an even wider range
of paradigms (e.g., statistical learning; see Section 4.2).

In addition to our lab’s neuroimaging studies, we should also
mention a recent behavioral study by Keresztes and Racsmany (in
press) that found a nonmonotonic relationship between inter-
ference and forgetting using a variant of the retrieval practice

paradigm (Anderson, Bjork, & Bjork, 1994). In this experiment,
participants studied paired associates; next, they practiced
retrieving a subset of these paired associates; finally, their
memory was tested for practiced pairs as well as other items
that were related or unrelated to the practiced pairs. Crucially,
instead of measuring the activation of competing items (during
retrieval practice) using a neuroimaging pattern classifier,
Keresztes and Racsmany (in press) used participants’ reaction
time during the retrieval practice trial as a proxy for the activa-
tion of competing items (long reaction time¼high activation). As
predicted by our theory, Keresztes and Racsmany (in press) found
that moderate reaction times during retrieval practice (indicating
moderate activation of competing items) led to more retrieval-
induced forgetting of competing items than higher or lower
reaction times. This study demonstrates that it is possible to
map out a nonmonotonic plasticity curve using behavior alone, if
you have a sufficiently sensitive behavioral measure of competi-
tion and sufficiently well-controlled stimuli.

4.2. Role of cognitive control

As noted in the Introduction, the observed U-shaped pattern
is predicted both by the nonmonotonic plasticity hypothesis
(Bienenstock, Cooper, & Munro, 1982; Diederich & Opper, 1987;
Gardner, 1988; Norman, Newman et al., 2006; Norman et al.,
2007; Senn & Fusi, 2005; Vico & Jerez, 2003) and also by the
executive control hypothesis (see, e.g., Anderson & Levy, 2010;
Levy & Anderson, 2002). Importantly, both theories posit a role for
cognitive control in driving memory weakening; the key differ-
ence between theories is whether this role is direct or indirect.
According to the executive control hypothesis, successful applica-
tion of cognitive control during the no-think phase is necessary
and sufficient to trigger memory weakening. By contrast, the
nonmonotonic plasticity hypothesis posits that the key under-
lying determinant of whether memories are strengthened or
weakened is the degree of activation of the memory (i.e., is it
low, moderate, or high), and that cognitive control processes
indirectly affect learning by affecting the level of activation of
competing memories. For example, in the think/no-think para-
digm, cognitive control processes can boost forgetting by taking
an item that would normally fall in the high-activation (strength-
ening) region of the curve and pushing it down into the
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moderate-activation (weakening) region of the curve. Since
both theories predict a relationship between cognitive control and
learning, both theories are equally compatible with extant neuroi-
maging findings showing a relationship between the activation of
‘‘cognitive control’’ regions (e.g., in prefrontal cortex) and forgetting
of no-think items (e.g., Anderson et al., 2004; Depue et al., 2007).

One potential way to tease apart the theories is to look for
nonmonotonic effects in paradigms that do not load heavily on
cognitive control. The nonmonotonic plasticity hypothesis pre-
dicts that – if we could engineer a situation where a memory
activates moderately in the absence of intentional suppression –
forgetting should still occur. We are currently testing this hypoth-
esis using a statistical learning paradigm where participants view
a stream of faces and scenes and make simple judgments about
these items (male/female for faces; indoor/outdoor for scenes;
Kim, Lewis-Peacock, Norman, & Turk-Browne, 2012). Previous
studies of statistical learning have demonstrated that people
make implicit predictions based on previously experienced sta-
tistical regularities—for example, if scene A was followed by face
B the first time it appeared, then participants might implicitly
predict face B when scene A is viewed again (see, e.g., Turk-
Browne, Scholl, Johnson, & Chun, 2010). If participants make an
implicit prediction that is not confirmed, the predicted represen-
tation may end up with a moderate level of activation, leading to
weakening of the memory. The statistical learning paradigm does
not completely eliminate demands on cognitive control processes,
but it does rely much less on intentional suppression than the
paradigms we have explored up to this point (e.g., think/no-think,
negative priming). As such, a successful demonstration of non-
monotonic plasticity in this paradigm would provide incremental
support for the idea that ‘‘inhibitory’’ memory effects can occur
without intentional suppression.

4.3. Differences between scenes and faces

In our curve-fitting analysis, we obtained strong evidence for
the predicted U-shaped relationship between no-think classifier
activity and memory performance on scene trials, but not on face
trials. We think this difference may be a consequence of the
classifier being more sensitive to scene activity than face activity
on no-think trials. As reported in Fig. 7, scene classifier evidence
reliably exceeded face classifier evidence on scene no-think trials, but
there was no reliable difference between face and scene classifier
evidence on face no-think trials.13 The difference between theory-
consistent and theory-inconsistent curves can be quite subtle—to
the extent that scenes generate a ‘‘higher-fidelity’’ classifier signal,
this may have given us the extra resolution that was required to
discriminate between theory-consistent curves and (highly similar)
theory-inconsistent curves (see the Supplementary Materials for
simulations showing how measurement noise can result in theory-
consistent curves being mistaken for theory-inconsistent curves, or
vice-versa).

Results from the functional localizer phase provide converging
support for the idea that (in our study) classifier sensitivity was
higher for scenes than for faces. During the functional localizer,
the average difference in correct-category vs. incorrect-category
classifier evidence was larger when participants viewed scenes
(scene evidence¼0.41; face evidence¼�0.15; difference¼0.56,
SEM¼0.02) than when they viewed faces (face evidence¼0.32;
scene evidence¼�0.15; difference¼0.47, SEM¼0.02), po0:005
13 We are aware that a difference in significance values does not imply a

significant difference (Nieuwenhuis, Forstmann, & Wagenmakers, 2011). What

matters for the present purposes is that there was a numerical trend toward the

difference in correct-category vs. incorrect-category classifier evidence being

larger for scene trials than face trials.
according to an across-subjects paired t-test. Furthermore, a
recent fMRI study by Reddy, Tsuchiya, and Serre (2010) suggests
that this principle (i.e., places being more detectable than faces in
fMRI data) may extend to other paradigms. As in our study, Reddy
et al. (2010) trained their classifier on periods of time when
participants were viewing categorized images (in their study, they
used famous faces, famous buildings, tools, and food), using
voxels from ventral-temporal cortex; they then applied the trained
classifier to periods of time when participants were imagining items
from those categories. In this ‘‘perception to imagery’’ condition,
they found that single-trial classification accuracy for place (i.e.,
building) decoding was substantially higher than single-trial accu-
racy for face decoding.

4.4. Using category-specific activity to track item retrieval

In the analyses described above, we used category-specific
activation (as measured by the classifier) as an index of how
strongly individual items were being retrieved. Our preferred
explanation of the observed association between moderate levels
of classifier evidence and forgetting is that (1) moderate levels of
classifier evidence reflect moderate levels of memory activation and
(2) moderate levels of memory activation result in memory weak-
ening. However, alternative accounts of this finding are possible. For
example, it is possible that moderate levels of classifier evidence
could reflect strong activation of generic scene information, as
opposed to moderate activation of specific scene information. We
know from prior studies that the parahippocampal place area (PPA)
responds strongly to layout information (Epstein, Harris, Stanley, &
Kanwisher, 1999; Epstein & Kanwisher, 1998); if the participant
strongly retrieves the idea that ‘‘this word was linked to a bedroom
scene’’, but no specific layout information, this could result in
moderate PPA activation and (through this) moderate output of
the scene classifier. If participants form a new association between
the word cue and the (retrieved) generic scene information, this new
association could interfere with retrieval of the old association at
test, thereby explaining the observed linkage between moderate
levels of classifier evidence (here, interpreted as strong generic
scene retrieval) and forgetting on the final test.14

Fortunately, it is possible to arbitrate between our preferred
interpretation of the data and this alternative interpretation by
relating classifier output to (behavioral) category memory accu-
racy. Our preferred hypothesis (i.e., moderate classifier output
reflects moderate activation of both category and item informa-
tion) implies that moderate classifier output should be associated
with forgetting of both category and item information. In this
case, we should see the same nonmonotonic curve (showing a
linkage between moderate classifier output and forgetting) when
we relate classifier output to behavioral category memory accu-
racy. By contrast, the alternative hypothesis (i.e., moderate
classifier output reflects strong activation of category information,
and weak activation of item information) implies that moderate
classifier output should be associated with improved category
memory (since, by hypothesis, the category representation is
strongly activated, and strong activation leads to further memory
strengthening).

To address this question, we ran an analysis relating classifier
evidence on scene trials to category memory accuracy. The shape
of the resulting curve was qualitatively identical to the shape that
we observed in our primary analyses relating classifier evidence
on scene trials to item memory accuracy; crucially, moderate
14 For additional discussion of the idea that forgetting could be caused by

interference from newly learned associations (as opposed to weakening of no-

think memories) see Tomlinson, Huber, Rieth, and Davelaar (2009), Bauml and

Hanslmayr (2010), and Huber, Tomlinson, Rieth, and Davelaar (2010).
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levels of classifier evidence were associated with forgetting of
category activation. This result supports our preferred interpreta-
tion of moderate classifier evidence (i.e., that it reflects moderate
overall activation) and goes against the alternative explanation
described above.15
4.5. Interpreting unscaled classifier evidence values

Before feeding the classifier evidence values into the curve-
fitting algorithm, we computed the difference between correct-
category and incorrect-category classifier evidence, and we scaled
these difference scores to fit within a 0-to-1 range. Both steps are
important: Taking the difference between correct-category and
incorrect-category evidence corrects for nonspecific factors (e.g.,
task engagement) that affect classifier evidence for both cate-
gories in tandem, and scaling is necessary to get the curve-fitting
algorithm to work (since the algorithm expects 0-to-1 x values).
However, scaling has the drawback of obscuring the actual
classifier evidence values.

To gain further insight into what the classifier is doing, we can
look at the unscaled classifier evidence values: For the ‘‘scene-
only’’ curve-fitting analysis shown in Fig. 9, the minimum scene—

face classifier evidence value was �0.62 and the maximum value
was 0.77; these values were mapped onto zero and one, respec-
tively, on the x-axis of the scaled curve. The minimum y-value on
the scene-only plasticity curve (the ‘‘dip’’) corresponds to an
unscaled scene—face value of �0.31. Up to this point, we have
been interpreting the left side of the scene-only plasticity curve
(from the leftmost edge to the dip) as reflecting low-to-moderate
levels of scene recall. However, the unscaled scores – showing
greater face evidence than scene evidence on these trials –
suggest that participants may be incorrectly recalling faces (or
possibly items from other categories) on these trials.

While we can not rule this out, there are two important
reasons to be skeptical of this interpretation. First, we should
note that face classifier evidence and scene classifier evidence are
not pure indices of face and scene processing, respectively. As
reported above in Section 4.3, the face classifier shows a char-
acteristic negative deflection when participants view scenes
during the functional localizer, and the scene classifier shows a
characteristic negative deflection when participants view faces
during the functional localizer; other studies have found a similar
‘‘push–pull’’ relationship between face-specific and scene-specific
processing regions (e.g., Gazzaley, Cooney, McEvoy, Knight, &
D’Esposito, 2005). To the extent that this push–pull relationship
exists during no-think trials, low levels of scene processing could
be expressed both as low levels of activity in scene-specific
regions and high levels of activity in face-specific regions, result-
ing in negative scene—face classifier evidence scores. Second, if
we interpret the left side of the scene-only plasticity curve as
reflecting varying degrees of face recall (such that face recall is
highest at the left edge, and somewhat lower at the point of the
dip), it is unclear why the dip occurs. Why should high levels
of face recall on no-think trials lead to better subsequent scene
memory than moderate levels of face recall? If anything, higher
15 While the curve predicting category memory had a clear nonmonotonic

shape, P(theory consistent) was slightly lower in the category-memory analysis

than in our main analysis: 0.66 instead of 0.76. This decrease in P(theory

consistent) may be a consequence of the fact that levels of category memory

were closer to ceiling, on average, than levels of memory assessed using our ‘‘both

item and category correct’’ criterion (average baseline category memory¼0.8;

average baseline ‘‘both correct’’ memory¼0.6), making it a less sensitive measure

of memory strength. To the extent that category memory is less sensitive to

(possibly subtle) effects of memory weakening, this may have incrementally

impeded our ability to uncover the true shape of the curve.
levels of face recall should predict worse subsequent scene
memory on the final test.

4.6. Limitations and future directions

Fostering low-to-moderate activation: While the nonmonotonicity
in the plasticity curve was statistically reliable, our curve-fitting
results still reflect considerable uncertainty about the precise shape
of the plasticity curve. In large part, this residual uncertainty is due to
undersampling of key regions of ‘‘memory activation space’’. Pooling
across all no-think trials from all participants, the shape of the
distribution of classifier evidence scores is Gaussian, with greater
density in the middle than on the edges; this undersampling of the
edges is evident in the credible intervals in Figs. 8 and 9, which bulge
outward (indicating greater uncertainty) on the left and right edges of
the plot. Undersampling of the edges is problematic for our estima-
tion procedure, insofar as the left edge of the curve is the part that
distinguishes theory consistent curves from (theory-inconsistent)
monotonically increasing curves. One way to address this problem
is to include conditions that are specifically aimed at sampling the
low-to-moderate activation range. For example, in the Lewis-Peacock
and Norman (2012) working-memory-switching study, we measured
scene activity for several seconds after the scene was deemed to be
irrelevant on that trial; in this situation, where nothing was onscreen
cuing the scene, the resulting levels of classifier evidence ranged from
very low to moderate (relative to parts of the trial where participants
were actively maintaining the scene).

Another way to address this undersampling problem is to move
toward adaptive real-time fMRI procedures, where we measure
memory activation using pattern classifiers and then dynamically
adjust the parameters of the experiment to increase the odds that
memory activation will fall within the ‘‘dip’’ of the plasticity curve.
For example, if we observe that a particular cue is eliciting too much
memory activation (leading to strengthening), we could present the
cue more briefly on the next trial, which hopefully will reduce the
amount of memory activation elicited by the cue. We have adaptive
studies of this sort underway now in our lab. If we devise a para-
digm that reliably elicits moderate activation (using fMRI neurofeed-
back) this could be used to enact targeted weakening of undesirable
memories (e.g., in PTSD patients).

Linking back to neurophysiology: This research was motivated
by the well-established U-shaped function relating the depolar-
ization of postsynaptic neurons to long-term potentiation and
depression (Artola et al., 1990; Hansel et al., 1996). This U-shaped
synaptic plasticity function is a possible explanation of the
results reported here; according to this hypothesis, when a scene
memory activates moderately (as indicated by the classifier), the
neurons representing the scene memory are moderately depolar-
ized, resulting in long-term depression (i.e., weakening) of the
synapses underlying that memory. The current dataset does not
allow us to assess whether this explanation is correct—our fMRI
measure is several steps removed from neural firing, and there is
no guarantee that moderate classifier output corresponds to
moderate post-synaptic depolarization. In future work, we plan
to extend this research to other imaging modalities (e.g., multi-
unit electrophysiology) that provide a more resolved picture of
neural activity; this will allow us to more definitively assess the
relationship between the cognitive-level phenomena discussed
here and the synaptic mechanisms described by Artola et al.
(1990) and others.

4.7. Conclusions

In summary, we used a Bayesian curve-fitting procedure
(described here for the first time) to demonstrate a nonmonotonic
relationship between the activation of scene memories on no-
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think trials and subsequent memory for these scenes on the final
memory test: Moderate activation of no-think scenes led to
forgetting but higher and lower levels did not. From a practical
perspective, this nonmonotonic relationship helps to explain why
some studies have failed to observe significant forgetting of no-
think items. From a theoretical perspective, these results are
consistent with neural network models positing that moderate
activation leads to synaptic weakening (e.g., Norman, Newman
et al., 2006; Norman et al., 2007) and also with theories positing
that memory inhibition is caused by successful (but not unsuc-
cessful) application of cognitive control (Anderson & Levy, 2010).
Researchers interested in pursuing these kinds of analyses (i.e.,
assessing the shape of the relationship between memory activation
and subsequent memory) are encouraged to download our P-CIT
curve-fitting toolbox from http://code.google.com/p/p-cit-toolbox/.
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