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Highlights
Most computations that people do in
everyday life are very expensive. Recent
research highlights that humans make
efficient use of their limited computational
resources to tackle these problems.

Memory is a crucial aspect of algorithmic
Computer scientists have long recognized that naive implementations of algo-
rithms often result in a paralyzing degree of redundant computation. More sophis-
ticated implementations harness the power of memory by storing computational
results and reusing them later.We review the application of these ideas to cognitive
science, in four case studies (mental arithmetic, mental imagery, planning, and
probabilistic inference). Despite their superficial differences, these cognitive pro-
cesses share a common reliance on memory that enables efficient computation.
efficiency and permits the reuse of past
computation through memoization.

We review neural and behavioral evi-
dence of humans reusing past computa-
tions across several domains, including
mental imagery, arithmetic, planning,
and probabilistic inference.

Recent developments in neural networks
expand the scope of computational
reuse with a distributed form of
memoization called amortization. This
opens many new avenues of research.
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The Efficiency of Computational Reuse
Many computational problems would be impossible to solve without the use of memory. Consider,
for example, the problem of finding the shortest path between two locations. Naively, you might
try solving this problem by brute force, enumerating all possible n-step paths. If at each step
you can move in one of k directions, then you would have to enumerate kn paths, an astronomical
number for even small n (for just ten steps and four directions, there are over one million possible
paths). Fortunately, the problem has internal structure that can be exploited: some paths are
subcomponents of longer paths, so you can reuse computation of the subpaths when
computing the longer path. If you already know the shortest paths from A to B and B to C,
you can combine them to find the shortest path from A to C going through B; all other paths
touching these three locations can be ignored. To apply this strategy, it is necessary to store
information about subpaths so that they can be reused later. Path planning is an example of
how the recursive structure of a problem can be used to implement a space–time trade-off
(see Glossary): redundant computation (which costs time) can be avoided by storing partial solu-
tions in memory (which costs space) [1].

The idea that responses can be stored in memory and reused to answer future queries has a long
history in cognitive science. Caching is implicit in the work of De Groot [2] and Newell et al. [3] and
has been advocated more explicitly by Logan and his colleagues [4]. A rather different (but equally
ubiquitous) role for memory has been developed in production system architectures like ACT-R [5]
and SOAR [6], where memory serves to strengthen and link together elementary computations
(productions) into more complex cognitive skills. We discuss these cognitive models of computa-
tional reuse in Box 1. Modern computer science approaches to computational reuse go beyond
these models to provide practical solutions to the issues of generalization, persistence, and
decomposition, as we discuss in the next section.

We begin this review with a general overview of computational reuse strategies. We then examine
four domains of cognitive science in which these strategies have been studied: mental arithmetic,
mental imagery, probabilistic inference, and planning.

Approaches to Computational Reuse
In an influential paper [7], the computer scientist Donald Michie proposed memoization as a
technique to reduce redundant computation. Function calls are intercepted by a ‘memoizer’
that inspects a cache (the memo-table) of past function calls and their outputs. If a function has
previously been called with the same inputs, then the previously computed result is reused. If
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Glossary
Amortized inference: memoizing the
process of inference, by learning a
mapping from data to the parameters of
the posterior distribution.
Bellman equation: a recursive
formulation of the value function for an
MDP.
Hidden Markov model: a generative
sequence model consisting of two
components: a transition distribution
that samples the next hidden state
based on the current one, and an
observation distribution that samples an
observation conditional on the hidden
state.
Markov decision process (MDP): a
mathematical framework to model
sequential decisionmaking. It consists of
a set of states, a set of actions, the
probability that action a in state s leads
to state s′ , and the reward received
when taking action a in state s. Rewards
and transitions are conditionally
independent of history given the current
state and action.
Memoization: storing the results of
expensive function calls and returning
the cached result when the same inputs
occur again, in order to speed up
algorithms or programs.
Space–time trade-off: where an
algorithm trades increased time usage
with decreased space usage and vice
versa. This is sometimes also called a
time–memory trade-off.
Sufficient statistic: a summary of a
data set that completely determines the
parameters governing the data
distribution.
Temporal difference learning:

Box 1. Comparing Cognitive Models of Reuse

Logan’s instance theory of automaticity [4] exemplifies the top-down approach to computational reuse: function outputs
(problem solutions) are stored with their inputs (stimuli) and retrieved whenever a new input matches the stored input. This
form of reuse is top-down in the sense that the output of the most complex function call is stored and reused; all intermediate
computations are forgotten. This has the advantage, shared with classical memoization techniques, that it is simple to imple-
ment and can be applied very generally, but also shares the disadvantage of failing to exploit the internal structure of complex
computations. For example, many probabilistic inference algorithms exploit conditional independence (e.g., the Markov
property; Box 2) to break complex problems down into simpler subproblems. Stored solutions to these subproblems can
then be used to assemble solutions to the complex problems.

Production system architectures such as ACT-R [89,90] and SOAR [6] exemplify the bottom-up approach to computa-
tional reuse: intermediate computations (productions) can be strengthened, making them more likely to be activated in
the future. They can also be compiled to formmore complex computations (chunks) that are then subject to strengthening.
This approach has the advantage that it can flexibly reuse intermediate computations when this is advantageous. In prac-
tice, this form of reuse can be tricky to implement effectively. Storing intermediate computations means that there is a very
large database, placing onerous demands on storage and retrieval [91].

Another issue for reuse in production systems concerns the normative assumptions underlying strengthening procedures.
In the ACT-R architecture [89], strengthening is based on the marginal probability of evoking a production or chunk. This
implicitly assumes that the posterior over production/chunk sequences is factorized, similar to mean-field approximations
in variational inference [92]. This assumption is computationally convenient because it avoids the problem of computing a
posterior over the combinatorial space of sequences. However, the cost is that such an approximation can be highly
inaccurate.
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the target function itself has not beenmemoized, any subfunctions that have beenmemoized can
be intercepted as the target function is executed.

We can use the classic example of the Fibonacci series to illustrate these ideas. The Fibonacci
series is defined recursively as the sum of the previous two function values:

f nð Þ ¼ f n − 1ð Þ þ f n − 2ð Þ; ½1�

with initial conditions f(0) = 0 and f(1) = 1. Implemented naively, you get a computation graph
shown in Figure 1A, where the same function is called multiple times with the same input.
Memoization works by wrapping f(n) in a memoizer, which consults a memo-table each time
the function is called to determine whether it has been called before, in which case the cached
output can be reused (Figure 1B).
approximates value iteration when the
Bellman equation cannot be computed
(the expectation over states is
unavailable or intractable) by sampling
from the environment and incrementally
updating value estimates based on each
sample.
Value iteration: solves the Bellman
equation for an MDP by updating value
estimates to locally satisfy the Bellman
equation until convergence.
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Figure 1. Computation Graphs for
Calculating the Fibonacci Series
(A) Naive implementation, withou
computational reuse. Redundan
function calls are highlighted in blue
(B) Memoization, in which function
outputs are added to a cache (the
memo-table) for reuse. The top-down
flow of computation mirrors the naive
implementation, except that function
calls are intercepted by the memo-
table.
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Practical memoization schemes must address a number of issues. One is generalization. Michie
recognized that a memo-table might be too rigid for some problems, particularly when the input
space is vast and the probability of a repeated function call is low. He proposed to solve this
problem by interpolating between cached outputs. For example, f(n) is monotonically increasing
in n, so f(n) must lie between f(n − 1) and f(n + 1). In fact, Johannes Kepler observed that the ratio
between consecutive Fibonacci numbers converges to a constant (the golden ratio), which
implies that for large n the output is the geometric mean of the outputs for the neighboring inputs:

f nð Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f nþ 1ð Þ f n − 1ð Þ

p
: ½2�
Thus, Fibonacci numbers can always be approximated by geometrically interpolating neighboring
numbers, if these are in the memo-table. When the queries take the form of natural numbers,
similarity is clearly defined, making interpolation easy. Gauging query similarity might not be as
obvious for other domains.

A second issue concerns persistence. Because there are inevitably space constraints, memoization
must be selective about what it stores and when it discards information [8,9]. At one extreme
(minimal space cost), the memo-table is erased after each function call. At the other extreme
(maximal space cost), thememo-table persists indefinitely across function calls. Many of the psycho-
logical phenomena we consider later require persistence beyond a single function call, but it is an
open question how long these completed computations persist in memory and in what form.

A third issue concerns decomposition strategy. The Fibonacci example above illustrates a
‘top-down’ strategy in which subfunctions are cached ‘lazily’ whenever they are called; in this
way, more complex functions are invoked before simpler ones. An alternative ‘bottom-up’ decom-
position strategy (sometimes referred to as tabulation [10]) is to call the simpler functions first and
then build up to the complex functions.

Four Case Studies
In the following subsections, we discuss computational reuse as a cognitive mechanism in four
domains. Despite their many differences, these domains have in common the property that
they benefit from algorithmic efficiency via problem decomposition and partial reuse. Empirical
findings from these domains show that training strengthens memory for computational results.
We first consider the domains of mental arithmetic and imagery, where existing cognitive models
have invoked caching and reuse. We then discuss more recent work applying these ideas to
planning and probabilistic inference. Machine learning has long studied these problems to find
computationally feasible solutions that invoke sophisticated forms of reuse. We review these
approaches and how they might inform our understanding of cognitive mechanisms.

Arithmetic
When children learn arithmetic, they appear to rely on counting routines. For example, when given
single digit addition problems (e.g., 4 + 5), they initialize a counter at the larger addend (5) and then
increment it by 1 at a roughly constant rate until the number of increments equals the smaller addend
(4). The strongest evidence for this ‘min-count’ model comes from chronometric data showing that
response times increase linearly with theminimumaddend [11]. By the age of 10 years,most children
appear to rely primarily on a different strategy, retrieving addition facts directly from memory, as
evidenced by a dramatic flattening of the response time function [12–14]. A similar shift is observed
in adults trained to perform alphabet arithmetic (e.g., A + 2 = C). Due to the unfamiliarity of these
problems, adults are effectively placed in a situation similar to the child first learning arithmetic and
transition with experience from counting to memory retrieval (Figure 2A) [15,16].
242 Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3
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Figure 2. Response Time Functions for Alphabet Addition (A) and Mental Rotation (B). To highlight the change in
slope as a function of practice (early versus late), the functions have been plotted relative to the response time for the
minimum x-axis value. Data in (A) replotted from [15]; data in (B) replotted from [17].
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This shift from algorithm to memory was elevated to a general theory of cognitive skill acquisition
by Gordon Logan in his ‘instance theory of automaticity’ [4] (see Box 1 for comparison with other
models). The key idea is that each time an algorithm is called, its output is stored in memory and
can be potentially reused later. Logan formalized the competition between algorithm andmemory
as a race, whereby behavioral outputs were based on the first process to complete. With
practice, more memory traces are available and hence it becomes more likely that one of
them will win the race. The instance theory of automaticity is a theory of memoized cognition: it
posits that reuse operates ‘top-down’ by storing the outputs of completed computations in a
memo-table (long-term declarative memory).

There is also some evidence for ‘bottom-up’ strategies in mental arithmetic. For example, when
faced with multidigit arithmetic problems (e.g., 31 + 25), older children often adopt a decompo-
sition strategy in which the addends are split into tens and units (e.g., 31 is split into 30 and 1),
so that the multidigit problem can be solved by simple addition (31 + 25 = 30 + 20 + 1 + 5)
[18–20]. This decomposition is not easily addressed by existing top-down race models
(e.g., Logan’s model) that store the final response for future reuse without any decomposition
into intermediate computations.

Imagery
The study of mental imagery parallels the study of mental arithmetic reviewed in the previous
section. In a classic experiment, Shepard and Metzler [21] asked subjects to judge whether two
line drawings depicted the same 3D object. On trials in which the drawings depicted rotated
versions of the same object, response times increased linearly with the angular difference, consis-
tent with the hypothesis that subjects were mentally rotating the object much as they would a
physical object. These findings are analogous to the response time functions for mental arithmetic,
suggesting an underlying iterative accumulation algorithm (counting or rotating). Imagery also
increasingly relies on memory over the course of training [17,22]. Tarr and Pinker [17] found that
response time functions for mental rotation flatten considerably after extensive practice
(Figure 2B). This again fits with a top-down instance-based memoization theory of the form
proposed by Logan [4].
Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3 243
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Also similar to arithmetic, effective memoization in this domain requires us to go beyond the reuse
of individual instances. For example, considerable evidence from studies of motion perception
suggest that we represent multipart objects using a hierarchy of relative coordinate frames
[23–25], including the dependency structure of scenes and objects at each level. This permits
a form of partial reuse and bottom-up memoization: the relative poses of each part can be com-
puted and cached for reuse in a whole-object transformation [26]. This suggests that the unit of
computational reuse is not whole instances; humans learn representations that permit more
effective partial reuse and generalization.

Probabilistic Inference
Perception is frequently faced with ambiguity: the size, shape, brightness, and color of
objects are not uniquely resolved by their sensory traces. Higher-level cognitive processes
like language understanding and social inference are similarly hampered by ambiguity.
Probability theory offers a self-consistent framework for reasoning under ambiguity and
has served as a useful normative benchmark for understanding how the brain deals with
ambiguity [27–29].

Consider an agent who has observed data d (e.g., a doctor is told that a patient has a cough).
There are multiple latent variables (denoted by z) that could potentially have produced d. For
example, the cough could have been generated by the common cold, or by lung cancer.
Some values of z are more likely to have produced d than others (in this example, lung cancer
produces coughing more reliably than the common cold). In addition, some values of z are
more likely to occur a priori than others (the common cold is more likely than lung cancer).
Probability theory tells us that the optimal inference takes the form of a posterior probability
distribution, as prescribed by Bayes’ rule:

P z j dð Þ ¼ P d j zð ÞP zð ÞP
z0 P d j z0ð ÞP z0ð Þ ; ½3�

where P(d ∣ z) is the likelihood of the data under hypothesis z and P(z) is the prior. Intuitively,
the likelihood captures the fit between a hypothesis and data, and the prior captures knowl-
edge about the frequency of occurrence for a hypothesis (although probability theory can
also accommodate hypotheses that only exist in our minds rather than in the external
world).

The fundamental problem for any resource-limited agent is that Bayes’ rule is intractable
in the general case. This problem arises ubiquitously, for example, any time there is a
combinatorial hypothesis space. In the clinical diagnosis example, there may be multiple
nonexclusive conditions (e.g., a person may have the common cold and lung cancer at
the same time). Thus, combinatorial structure runs into the same kind of exponential
explosion in time complexity found in planning problems. Fortunately, just as agents can
harness the Markov property in the service of planning (see next section), they can also
harness the Markov property in the service of probabilistic inference, breaking complex
inference problems into simpler ones (Box 2). We can recognize this strategy as a form of
bottom-up computational reuse of solutions to subproblems in order to avoid redundant
computation.

A classic example of cached inference is the Kalman filter, which implements exact inference in a
linear-Gaussian hidden Markov model (a special case of the model described in Box 2). In part
244 Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3



Box 2. Breaking Down Inference Problems Using the Markov Property

For illustration, we analyze a simple model in which Bayes’ rule is actually tractable, despite the combinatorial structure.
Suppose an agent observes a data sequence d1:n = [d1, …, Dn] and the agent assumes that this sequence was
generated by a corresponding sequence of latent states z1:n = [z1, …, zn]. If the agent wants to compute the
posterior over the state at time n, then probability theory dictates that it has to marginalize over all possible state
histories (i.e., all the different ways it could have arrived at zn):

P zn j d1:nð Þ ¼
X

z1:n−1

P zn; z1:n−1jd1:nð Þ ½I�

In other words, the agent would have to do inference over the combinatorial hypothesis space of n-step state sequences.
If the latent variables are continuous, the summation is replaced with integration, whichmakes the problem potentially even
more challenging.

Critically, if the agent also assumes that the generative process is a hidden Markov model, in which observations and
transitions between states depend only on the current state, then it can break the problem down as follows:

P znjd1:nð Þ ¼
X

zn−1

P znjdn; zn−1ð ÞP zn−1jd1:n−1ð Þ: ½II�

Notice that now the agent only needs tomarginalize over the last state, not the whole sequence. Furthermore,P(zn−1 ∣ d1:n−1)
is simply the posterior from the last time step. This means that the equation can be applied iteratively at each time step
to maintain the exact posterior distribution. The basic idea of using Markov assumptions to break a complex inference
problem down into simpler problems appears in many different contexts, including more challenging inference
problems [92].

The implication for memory is that only the sufficient statistics of the posterior need to be stored in order to implement
probabilistic inference and these statistics can be updated based on the currently available data (dn) without retrieving past
data. Thus, inference algorithms can reduce their computational footprint by exploiting the structure of the probabilistic
model and storing the appropriate intermediate computations.

Trends in Cognitive Sciences
because of its resemblance to nonprobabilistic error-driven learning rules, the Kalman filter has
been proposed as a psychologically plausible model of learning [30–32]. Moreover, it can be
implemented in biologically plausible neural circuits [33–35]. What makes the Kalman filter
efficient is that it stores intermediate results (the posterior sufficient statistics) in a cache
and updates them in closed form at the next time step, thereby bootstrapping intermediate
computations. This keeps the computational cost of inference bounded even when dealing
with an infinite stream of data.

While the kind of caching strategy described earlier is a powerful tool for exact inference,
there are many probabilistic models in which it is either still too expensive (e.g., if the suffi-
cient statistics are not low-dimensional) or cannot be applied at all (e.g., if the marginalization
lacks a closed form solution). One approach to this problem is to follow in the spirit of
the Kalman filter, but instead approximate these computations. This can be achieved using
Monte Carlo sampling [36], variational approximation [37], as well as combinations of the
two [38,39] that utilize their complementary benefits. These generalizations of the Kalman
filter have been used to model human probabilistic inference in sequential tasks, like multiple
object-tracking [40] and sentence comprehension [41], that do not have simple closed form
solutions. However, these approximate computations can also be very expensive: Monte
Carlo sampling requires many samples to give good estimates and variational inference
requires a sometimes expensive optimization in order to get good approximations. An
alternative is to instead use a top-down approach that directly caches inferences from
previous experience.
Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3 245
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Figure 3. Amortizing Posterior Inference. (A) P(h, d) is a generative model that produces latent variables h and data d given h, Qϕ(h ∣ d) is a recognition model,
parametrized by ϕ, that maps observable data to the posterior distribution over underlying hypotheses. (B) The recognition network used in [51], its capacity depends
on the number of nodes in the middle layer. (C) Humans are better at Bayesian inference when the provided probabilities are believable (replotted from [52). The same
pattern arises in a recognition network with limited capacity (replotted from [51]).
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A resurgence of interest in this kind of top-down memoization for probabilistic inference
was recently kindled by the development of the variational auto-encoder, a neural network
that maps data inputs to an approximate posterior [42]. In essence, the neural network func-
tions as a distributed memo-table, obviating the need for bottom-up iterative computation.
The variational auto-encoder is an example of a more general family of algorithms, known
as amortized inference, which replace iterative computation with a fast parametrized
‘recognition model’ [43–46]. The parameters of this recognition model can be learned
concurrently with the parameters of the generative model. When the recognition model
takes the form of a neural network parametrized by synaptic weights, we refer to it as a
‘recognition network’. Such a network is a sophisticated version of Michie’s interpolation
approach to memoization, able to operate on inputs it has never seen before by generalizing
from past inputs. The strengths and shortcomings of top-down memoization with recogni-
tion networks can be traced back to the strengths and shortcomings of neural networks
in general. They are very expressive and can interpolate well even in complex and high
dimensional inference problems like visual recognition and natural language processing.
However, as they currently stand, they require a lot of data and struggle to generalize com-
positionally [47,48].

Recent work in psychology and neuroscience has explored whether the brain may be using
amortized inference. Yildirim and colleagues [49] have proposed that the ventral visual
stream linking primary visual cortex to the medial temporal lobe implements a fast recogni-
tion network for object and scene perception. Applying this proposal to face perception,
they showed how such a model could efficiently compute inferences about 3D form and
face identity, matching human robustness to variation in lighting and pose [50]. They also
showed that the internal representations encoded by the recognition network matched
population activity of neurons recorded in macaque ventral visual stream during face
processing.

In another line of work [52,53], we have tested a key implication of amortized inference: past
inferences should exert an influence on future inferences, because they imprint themselves
on the parameters of the recognition model. We demonstrated experimentally that inferences
are biased by recent inferences computed for other queries and that this bias depends on
246 Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3
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the overlap between the queries. To explain such biases, we showed how amortization using a
neural network leads to sharing of structure between different posteriors, provided the network
is capacity-limited (e.g., with a bottleneck in the mapping from input to output) [51] (Figure 3).
Such sharing can also explain a number of biases reported in the psychology literature. For
example, people are much more accurate at Bayesian inference when the probabilities
are realistic [54,55]. This finding is at odds with the view that the brain relies solely on a general-
purpose inference engine that operates on arbitrary probabilities. By contrast, our theory accom-
modates this finding by assuming that the recognition network preferentially allocates its
limited capacity to answering high probability queries. This preferential allocation is an automatic
consequence of training the recognition network on queries drawn from the environment. We
further showed that experimentally manipulating the historical query distribution can shift the
pattern of bias, consistent with the preferential allocation hypothesis.

Planning
Planning a sequence of actions to maximize cumulative reward is challenging because the
number of possible sequences explodes combinatorially with the planning horizon. With only
two actions, an agent would have to compare over 1000 different action sequences just to
plan over a ten-step horizon. An archetypal example of such planning is in games like chess
and Go. Understanding this kind of planning, both how humans do it as well as how to artificially
replicate it, has historically played a central role in both the study of artificial intelligence as well as
cognitive science [2,3,56,57].

Exact planning requires that we evaluate every possible game tree and then choose the best one.
Several empirical studies have found that humans do not perform this kind of exact planning and
often evaluate game states based on memory of familiar board positions from previous games
[2,58–60]. These studies provide evidence that humans rely on memoization and partial reuse for
efficient planning, but still leave many questions unanswered about the precise mechanism
of reuse. In the following sectionwe consider various computational implementations ofmemoization
for planning, their use in modern machine learning, as well as their cognitive and neural signatures.

To simplify the problem, we first outline a standard set of assumptions made about the structure
of the environment, known as aMarkov decision process (MDP). An agent canmove between
states by selecting actions and collecting rewards; critically, the rewards and transitions depend
only on the current state and action. This is known as the Markov property and allows us to write
the expected cumulative reward (value) in a recursive form known as theBellman equation [61]:

Q s; að Þ ¼ R s; að Þ þ E Q s0; a0ð Þ½ �; ½4�

where s denotes the current state, a denotes the action, R(s, a) is the expected reward, and the ex-
pectationE½Q s0; a0ð Þ�denotes an average of the value function over the next step state (s0) and action
(a0). In some cases a discount factor multiplies the second term, to capture down-weighting of distal
rewards. The Bellman equation underwrites most efficient planning algorithms, because it lets the
planner decompose a complex problem into a series of simpler ones. Specifically, an agent can it-
erate over states and actions, recomputing the action that maximizes the right-hand side, and this
procedure (known as value iteration) is guaranteed to converge to the optimal policy in a finite
number of iterations.

To compute the expectation in the Bellman equation, the agent needs access to a model of the
environment, in particular the transition function that specifies the probabilities of each possible
next state given the current state and action. In some domains, this function is not available,
Trends in Cognitive Sciences, March 2021, Vol. 25, No. 3 247
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but the agent can still find the optimal policy by interacting with the environment and using
samples from these interactions to approximate the expectation (Equation 4). This leads to a
family of ‘model-free’ reinforcement learning algorithms, the most prominent of which is known
as temporal difference learning [62]. This can still be challenging in domains that contain
many possible states, resulting in a large and unwieldy memo-table for the Q-value of every
state-action pair. The key innovation of deep reinforcement learning [63,64] is to instead use a
neural network to learn this mapping. Similar to the amortized recognition network from the pre-
vious section, a Q-network operates as a distributed memo-table, permitting partial reuse across
similar inputs and generalization to new inputs.

When we have access to an internal model but calculating the expectation is too expensive, we
can use the internal model as a simulator, generating fictive experience ‘offline’ that can then be
cached into a temporal difference learning algorithm [62]. These simulations themselves are also
expensive and can be intelligently allocated by prioritizing the exploration of states and actions
with high cached values [65]. This strategic use of a model in conjunction with temporal difference
learning was a crucial part of the recent successes in superseding human performance in Go [66].

The model-based and model-free algorithms described earlier have in common their reliance on a
bottom-up decomposition approach: subproblems are solved and then cached for reuse in
solving larger problems. These algorithms have been highly successful as theories of how the
brain solves sequential decision-making problems [67]. Caching can explain why humans and
other animals sometimes make decisions based on ‘stale’ information, choosing actions that
bring them to previously high-value states that have been devalued [68–71], for example, when
rodents press a lever to obtain food on which they have been satiated and hence do not want to
consume. This pattern of behavior arises if some parts of the cache have not yet been updated
after other parts have been updated (inducing inconsistencies between the cached values).
Partial cache updating is an inevitable consequence of a resource-constrained planning system
that must prioritize some updates over others; when more cognitive resources, time, or incentives
are available, humans exhibit a greater propensity for cache updating [72–77]. For example, when
given the opportunity tomentally simulate from their internal model during quiet rest, people show a
greater degree of behavioral adaptation to task changes [78], consistent with offline cache
updating. Furthermore, the degree of adaptation tracks neural measures of mental simulation [79].
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 4. Planning Task Studied in Huys et al. [80]. (A) State transition diagram, arrows indicate different actions. The
numbers next to the arrows indicate the reward collected on each transition. (B) Example of policy fragmentation. Starting in
state 1, the optimal four-step action sequence is highlighted by the bold arrows. The blue triangles show a fragmentation o
the decision tree consistent with subjects’ choices (broken arrows), according to which the optimal solution to the three-step
problem (1-2-3-4) is cached and then reused when computing the solution to the four-step problem.
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Outstanding Questions
What are the costs of computations,
both the time required to perform new
computations, as well as the space
required to cache

How does the brain negotiate this
space–time trade-off in choosing when
to cache computations?

How are cached computations
generalized to novel inputs?

How can we combine top-down and
bottom-up memoization schemes to
reap their complementary benefits?

What kinds of representations permit
partial reuse by integrating information
from cached values and new
computation?

What are thememory systems (episodic,
declarative, semantic, etc.) that underlie
the caching of computations? How can
we study their roles behaviorally and
neurally?

Computational rationality or resource
rationality posit another kind of trade-
off, between accuracy and computa-
tional cost. What is the role of memory
as a computational resource in this
trade-off?

Trends in Cognitive Sciences
Memoization can also provide insight into how old plans are reused to solve new problems. Huys
and colleagues [80] analyzed human behavior in a planning task in which subjects selected a
sequence of actions to maximize rewards, starting from a randomly chosen state on each trial
(Figure 4A). Subjects did not in general choose the optimal path, instead relying on several
heuristics. Most relevant for our purposes, they exhibited a bias towards paths that adhered to
previously chosen subpaths (policy ‘fragments’). For example, the optimal four-step path starting
in state 1 is 1-2-5-1-2 (Figure 3B). However, subjects preferred the path 1-2-3-4-2. Borrowing
ideas from earlier theoretical work [81,82], Huys and colleagues explained this bias as follows:
subjects had already solved the optimal three-step path and they then reused this solution in
solving the four-step path. This has the advantage of reducing the planning problem to a
single-step choice, while still achieving a good (albeit suboptimal) solution. Consistent with the
findings from mental arithmetic and imagery described earlier, the degree of fragment reuse
increased across trials, ostensibly due to filling of the memo-table. Partition into fragments also
carries similarities to the decomposition strategies used in these domains for partial reuse.

Policy fragmentation has kinship with a broader set of ideas about the role of memory in sequential
decision making [83,84]. Of particular relevance is the work of Lengyel and Dayan [85], who
proposed that entire sequences of actions are remembered as a unit and reused later when
an agent occupies the same starting state. They argued that this form of ‘episodic control’was par-
ticularly valuable when an agent has very little experience in a domain. In the low-data regime, agents
cannot hope to build an accurate internal model of the world, nor can they hope to accurately esti-
mate cached values by averaging samples, so episodic memories may be the agent’s best bet
(a claim supported by simulations and mathematical analysis). Recent work in artificial intelligence
has combined this idea with the generalization permitted by neural networks to solve challenging
sequential decision problems, demonstrating impressive gains in learning speed [86–88].

Concluding Remarks
Within psychology and neuroscience, memory has traditionally been studied as a goal in itself;
memory tasks (e.g., list learning) explicitly study how information is stored and retrieved. In this
review, we have argued for a conceptualization of memory as a ubiquitous participant in efficient
computation. Similar ideas have historically been advocated for in cognitive science (Box 1), how-
ever, modern machine learning algorithms go beyond these approaches. These algorithms use
powerful function approximation architectures to adaptively determine what information to
store. They are also disciplined by domain knowledge (e.g., the Markov property and the Bellman
equation) that provides principled constraints on the structure of memory.

The exercise of formalizing human cognition in computational terms has directly highlighted just
how computationally expensive several of the tasks we naturally perform can be. This review
highlights a crucial component of how intelligent behavior can arise despite limited computational
power: by the use of memory as a computational resource. There remain several open questions
in how this resource is deployed (see Outstanding Questions).
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