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Abstract

As modern deep networks become more complex, and get closer to human-like capabilities in

certain domains, the question arises as to how the representations and decision rules they learn

compare to the ones in humans. In this work, we study representations of sentences in one such

artificial system for natural language processing. We first present a diagnostic test dataset to exam-

ine the degree of abstract composable structure represented. Analyzing performance on these diag-

nostic tests indicates a lack of systematicity in representations and decision rules, and reveals a

set of heuristic strategies. We then investigate the effect of training distribution on learning these

heuristic strategies, and we study changes in these representations with various augmentations to

the training set. Our results reveal parallels to the analogous representations in people. We find

that these systems can learn abstract rules and generalize them to new contexts under certain cir-

cumstances—similar to human zero-shot reasoning. However, we also note some shortcomings in

this generalization behavior—similar to human judgment errors like belief bias. Studying these

parallels suggests new ways to understand psychological phenomena in humans as well as informs

best strategies for building artificial intelligence with human-like language understanding.

Keywords: Representation learning; Natural language inference; Compositionality; Heuristic;

Strategies; Sentence embeddings; Generalization; Test datasets

1. Introduction

Recent years have seen a vast improvement in the capabilities of artificial intelligence

systems, driven primarily by developments in deep neural networks (for a review, see

LeCun, Bengio, & Hinton, 2015). These have allowed artificial systems to reach human-
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level performance at video games (Mnih et al., 2015), object recognition (Russakovsky

et al., 2015), and voice generation (Oord et al., 2016), as well as produced impressive

performance in several other domains. However, some serious concerns haunt deep learn-

ing approaches and their promise as a general solution to artificial intelligence. Many of

these concerns surround the lack of structure in the representations and decision criteria

these systems learn (Lake, Ullman, Tenenbaum, & Gershman, 2017; Marcus, 2018). This

problem has been implicated in deep learning’s data inefficiency and inability to learn

abstract structure from few examples, its difficulty in utilizing hierarchical structure and

thereby foster transfer between tasks and domains, as well as the challenge of integrating

established prior information into deep learning systems. It also presents serious concerns

about the interpretability of its representations and decision criteria, making them less

dependable and risky for deployment in sensitive or highly variable domains.

All of this points to a crucial problem: How can we better understand the representa-

tions learned by these systems? Existing studies (e.g., Karpathy, Johnson, & Fei-Fei,

2015; Li, Chen, Hovy, & Jurafsky, 2015; Yosinski, Clune, Nguyen, Fuchs, & Lipson,

2015; Zeiler & Fergus, 2014) primarily use approaches inspired by neuroscience methods

developed to understand the brain, for example, the statistical analysis of unit activations,

and ablation studies where specific units are disconnected or deactivated. These methods

promise interesting bottom-up insights into the inner workings of these systems. Cogni-

tive science provides another set of tools to approach this problem from the top down

(Ettinger, Elgohary, Phillips, & Resnik, 2018; Kádár, Chrupała, & Alishahi, 2017;

McCoy, Pavlick, & Linzen, 2019; Ritter, Barrett, Santoro, & Botvinick, 2017), by decom-

posing cognitive processes into their computational components, building models that

incorporate these components, and testing these by making predictions about behavior on

carefully selected test problems that distinguish different hypotheses.

The cognitive science approach has yielded huge benefits in understanding higher level

cognition in humans, a prime example of which is the human ability to learn, understand,

and produce language (Chomsky & Lightfoot, 2002; Linzen, 2019). This domain exem-

plifies a hallmark of human intelligence: the ability, in the words of von Humboldt, to

“make infinite use of finite means.” Specifically, human cognitive abilities have been

characterized as systematic (Fodor & Pylyshyn, 1988; Lake, Linzen, & Baroni, 2019)—
this indicates an algebraic capacity to produce new combinations from known compo-

nents. For example, when a person learns a word in a specific context as part of a partic-

ular sentence, they can immediately use this new word in an infinity of other sentences in

which this word has never previously been encountered. Systematicity therefore allows

humans an impressive capacity to generalize, transferring knowledge from one context to

others. This ability requires the representations underlying this newly learned word, for

example, to be abstract (not tied to specific contexts) and compositional (possible to com-

bine with other words and sentences). The absence of systematicity in neural networks

has been a recurring (and controversial) theme in cognitive science (Fodor & Pylyshyn,

1988; Lake et al., 2017). While several previous approaches have demonstrated the lack

of compositionality in neural networks (Belinkov & Glass, 2019; Gershman &
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Tenenbaum, 2015; Lake & Baroni, 2018), they have not focused on analyzing the repre-

sentations that are in fact learned, how they can be altered, and their various properties.

In this paper, we carry out an analysis of a machine learning model for a difficult natu-

ral language processing task. In particular, we study its behavior on controlled test data

to shed light on the sentence representations it learns. We discover that there is no evi-

dence that the model uses systematic representations; instead, we find evidence of various

heuristic strategies. We then investigate how these heuristics might arise. Analyses of the

training distribution reveal that it is very biased, containing many unintended structural

regularities that can be exploited by these much simpler heuristics. These simple rules are

therefore easily acquired by the neural network, since they explain a substantial amount

of variance without having to invoke a more complex systematic representation. We then

carry out various augmentations to the training set and find that the system can learn

some form of abstract composable representation, given the right training distribution.

Finally, we investigate how these composable representations generalize. Several findings

in cognitive science indicate that even humans do not always generalize entirely system-

atically (Evans, 2003; Evans & Perry, 1995). We find parallels between our findings and

studies of human representations in terms of how systematic they are under certain cir-

cumstances, as well as in terms of when and where this systematicity breaks down. We

discuss how such parallels can be useful to both cognitive science and machine learning.

We also note a caveat to using the behavior of a full model to shed light on its repre-

sentations. The behavior of the model is supported by both the sentence representations

learned as well as the decision function that takes these representations as input to pro-

duce task-specific output. This partially confounds the contributions of the representations

and the decision function. In this paper, we keep the classifier relatively simple (detailed

in Section 2.3), so the bulk of the behavior observed is driven by the representations.

However, we cannot conclusively demonstrate the presence or absence of systematicity in

the representation from this behavior. For example, it is possible that the representations

are indeed systematic, but that the decision function fails to use this information correctly

for the task at hand. Since the decision function is trained end-to-end with the representa-

tions, this is unlikely—the representations are unlikely to represent information that they

cannot use for the task. Similarly, it is possible that the representations are not in fact

systematic, and any systematic behavior should be attributed to the decision function.

This, too, is unlikely given the relatively low expressivity of the decision function com-

pared to that of the sentence encoder. Nonetheless, we note that from our methodology,

we can only conclude whether or not the entire model displays systematicity, and this

gives indirect evidence for whether or not the representations themselves are systematic.

2. Background

In this section, we review some background on the kinds of representations we will be

studying (vector space embeddings of sentences). We also review the three key factors in

how such embeddings are generated: the task that they are optimized for, the architecture
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of the model used to perform that task, and the training distribution on which perfor-

mance is optimized.1 We also discuss relevant related work on studying such representa-

tions.

2.1. Vector space embeddings

Vector space models represent items as vectors in some metric space. These have a

long history in cognitive science as models of semantic representations (Beals, Krantz, &

Tversky, 1968; Pereira, Gershman, Ritter, & Botvinick, 2016; Steyvers, 2006). In particu-

lar, in the domain of language, vector space models of words (also known as word

embeddings) that are learned using distributional information (statistics of text corpora)

have been shown to encode syntactic as well as semantic structure, and they have been

used in psychological models for syntactic category acquisition (Redington, Crater, &

Finch, 1998), inductive vocabulary learning (Landauer & Dumais, 1997), analogical rea-

soning (Rumelhart & Abrahamson, 1973), categorization (Jones & Mewhort, 2007), and

high-level associative judgments (Bhatia, 2017). Modern machine learning has allowed

the mining of very large datasets to produce vector space embeddings that are now com-

monly used as the word representations in artificial intelligence systems for natural lan-

guage processing (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington,

Socher, & Manning, 2014).

Understanding language requires understanding not only words, but also their relations

within a sentence. These relations are abstract and composable, allowing language to be

combinatorially productive—with a finite set of words, one can systematically produce an

infinite set of sentences simply by creating new and longer combinations of these known

words. The number of sentences in a language therefore far exceeds the number of words.

For this reason, generating similar vector embeddings for sentences has proven challeng-

ing. Recent papers have developed several supervised as well as unsupervised approaches

to learning vector space representations of sentences using recurrent neural networks

(RNNs) that are able to represent the order of words in a sentence (Conneau, Kiela, Sch-

wenk, Barrault, & Bordes, 2017; Hill, Cho, & Korhonen, 2016; Kiros et al., 2015). These

are intended to capture sentence-level semantic content, and they have been shown to

perform reasonably well on transfer tasks (sentence-level semantic tasks on which the

embeddings were not specifically trained). In particular, the performance of these sen-

tence models exceeds the performance of representations that treat sentences as bags of

words (BOW models)—these patently lack any order information about the words, there-

fore ignoring the abstract and composable relational structure at the sentence level. How-

ever, exactly what relational information between words is actually represented in such

RNN sentence models is unclear. In this work, we start to shed light on this question.

2.2. Natural language inference

The sentence embeddings we analyze are trained on the natural language inference

(NLI) task. The goal is to classify pairs of sentences (a premise and a hypothesis) into

“entailment,” “contradiction,” or “neutral,” depending on the semantic relation between
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the two sentences. This is a popular domain for studying artificial representations since it

has a lot of relatively interpretable underlying structure (Ettinger et al., 2018; Glockner,

Shwartz, & Goldberg, 2018; McCoy et al., 2019; Nie, Wang, & Bansal, 2019). For exam-

ple, it is a simple domain in which abstract and composable relational structure is

required—word-level information is not generally sufficient to perform well on this task.

The premise sentence “Anne is more cheerful than Bob” contradicts the hypothesis sen-

tence “Anne is less cheerful than Bob,” but entails the hypothesis sentence “Bob is less

cheerful than Anne.” Here, both the hypothesis sentences have the exact same words, and

they would be indistinguishable if we were just comparing the words in them. More gen-

erally, X is more Y than Z entails that Z is less Y than X, for any X, Y, and Z. In this

case, the specific words used almost do not even matter, and the bulk of the information

is in the relations between the words in the sentence. Encoding abstract rules like this

allows us to systematically carry out NLI on combinatorially many different sentences,

with different Xs, Ys, and Zs.

The human ability to carry out abstract reasoning of this sort is a richly studied topic.

Some of these abilities however are so obvious that they are often simply taken for

granted without formal study. For example, it is reasonable to assume that any adult

human (in the absence of time pressure or cognitive load) can fairly easily process that if

X is more Y than Z, then in general Z is less Y than X irrespective of the specific mean-

ings of X, Y, and Z. In this paper, we investigate the extent to which certain machine-

learned sentence embeddings can represent and use such abstract rules in NLI.

Despite the generally acknowledged power of human abstract reasoning, a number of

studies indicate that humans are not perfect: Semantic content (e.g., the specific meanings

of the X, Y, and Zs above) has been shown to interfere with systematic inferences in an

effect often termed “belief bias” (Braine, 1978; Johnson-Laird & Steedman, 1978). This

effect is especially noticeable in children (Evans & Perry, 1995), as well as adults under

time pressure or cognitive load (Evans, 2013). In the last part of this paper, we discuss

similarities between humans and machines in how they fail certain tests of systematicity.

2.3. Models for sentence embeddings

The sentence embeddings we study in this paper are from a highly successful NLI sys-

tem, InferSent (Conneau et al., 2017). Each premise and hypothesis sentence is input to a

sentence encoder as a sequence of pretrained 300-dimensional GloVe word embeddings

(Pennington et al., 2014). These word embeddings already contain a lot of information

about the semantic and syntactic roles of the words (for details, see Section 2.1), and

therefore a large part of the lexical information is already represented. Therefore, the bulk

of the work InferSent has to do is to learn and represent how these words relate to one

another in a sentence to provide meanings. The sentence encoder takes in this variable

length input and, after passing it through various recurrent and convolutional (for details,

see Conneau et al., 2017), provides a 4,096-dimensional vector as output. This output

vector serves as a sentence embedding. The same sentence encoding process is applied to

both the premise and the hypothesis sentences. To make the final inference, both sentence
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embeddings are fed to the classifier described in Fig. 1 (with two linear fully connected

512-dimensional hidden layers) that labels each pair as entailment, neutral, or contradic-

tion. The network is trained end-to-end with supervised learning, using a large labeled

dataset for NLI (see next section for details on this dataset).

Using the behavior of a downstream classifier to gain insights into the properties of a

representation is a common approach to analyzing high dimensional representations, for

example in neuroscience (Hung, Kreiman, Poggio, & DiCarlo, 2005). But this approach

runs the risk that some of the findings might reflect properties of the classifier rather than

of the embeddings. We partially address this concern by keeping the classifier simple (us-

ing only linear layers), such that the bulk of the information about sentences and their

meaning is stored in the embedding. This assumption is further justified by findings that

the learned embeddings perform well on other sentence-level tasks (such as sentiment

analysis, semantic textual similarity, and other NLI datasets; details in Conneau et al.,

2017) by reusing the sentence encoder and retraining only the classifier that acts as the

decision function for each specific task at hand. This indicates that the system does cap-

ture semantic content, and that it is primarily stored in the sentence embedding (not in

the classifier), and is in a form that is easily decoded by simple downstream decision

functions.

For our tasks, we replicate the procedure in Conneau et al. (2017) to obtain sentence

embeddings. These are henceforth referred to as the InferSent sentence embeddings. Our

trained InferSent model gives us 84.73% accuracy on validation and 84.84% accuracy on

the test dataset, which is comparable to the performance of the classifier reported in Con-

neau et al. (2017). For comparison, we consider a BOW baseline model that averages the

pretrained GloVe word embeddings for all the words in the sentence to form a sentence

embedding. These BOW embeddings cannot represent abstract relational structure, since

the architecture of the model used to generate them (a simple average of the word

embeddings) cannot express word order. We then train a perceptron classifier (with the

Fig. 1. InferSent architecture, figure adapted from Conneau et al. (2017).
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same architecture as used in InferSent) on these embeddings to perform NLI. The two

models therefore only differ in the sentence embeddings used. The BOW model achieves

53:99% accuracy on the SNLI test set (comparable to the BOW performance reported in

Conneau et al., 2017).

Neural networks can act as universal function approximators (Hornik, 1991; Siegel-

mann & Sontag, 1995), and given sufficient capacity, they can represent any arbitrarily

complex set of relations between the words in the sentence. The InferSent model has a

very large capacity due to a large number of layers and hidden units (see Conneau et al.,

2017), so a lot of abstract compositional structure is in theory within the representational

capacity of these sentence embeddings. In this paper, we analyze how much systematic

structure is actually learned and utilized for the NLI task at hand.

2.4. Training datasets

To understand sentence embeddings like the ones learned by InferSent, it is imperative

to not only consider the model specifications for the system that produces them (in this

case the specific end-to-end architecture of the network in InferSent), but also the learn-

ing signals it receives from the training set. For many deep learning-based methods, very

little information about the structure of the task is baked into the architecture of the mod-

els—the only structure about language that it is endowed with before training are the

biases that come with using an RNN as the architecture. This specifies that sentences

have variable-length, sequential structure. These embedding models are therefore fairly

“tabula rasa,” and most of what they represent about the structure of the task (in this case

NLI) is learned from training data. As elaborated in the previous section, some abstract

compositional structure is within the representational capacity of the InferSent sentence

embeddings—but whether or not the right structure is actually learned and represented

depends largely on the training data. The significance of the training set on the represen-

tations learned by flexible deep learning methods is often not adequately considered. One

contribution of this work is to highlight and analyze this issue.

InferSent was trained on the Stanford Natural Language Inference (SNLI) dataset (Bow-

man, Angeli, Potts, & Manning, 2015), a popular labeled dataset for NLI. SNLI consists of

550k premise–hypothesis sentence pairs, and it is balanced (consists of equal number of

pairs with entailment, contradiction, and neutral relationships). The dataset was generated

with a crowd-sourcing framework. Workers were presented with a scene description from

a corpus of image captions that act as the premise, and asked to supply hypothesis sen-

tences that have each of the three possible NLI relations (entailment, neutral, and contra-

diction) to the given premise. The freedom to produce entirely novel hypotheses leads to a

rich set of sentences; however, it also leads to some artifacts that can strongly bias the rep-

resentations learned by a “tabula rasa” system. We discuss these in later sections.

2.5. Related work

There has been previous work in cognitive science, studying the systematicity of neural

network representations in the domain of natural language (Gershman & Tenenbaum,
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2015; Lake & Baroni, 2018). These analyses, however, are often carried out on toy sys-

tems, and while they demonstrate the lack of systematicity, they do not investigate what

the systems do learn or analyze the resulting representations.

There has also been interest in the field of natural language processing, to build toward

a better understanding of machine-learned representations (Belinkov & Glass, 2019).

Other studies concurrent with ours (Ettinger et al., 2018; Glockner et al., 2018) as well as

building on our work (McCoy et al., 2019) have investigated sentence representations by

analyzing behavior on controlled test sets that expose simpler word-level heuristics in

NLI models. Gururangan et al. (2018), Poliak, Naradowsky, Haldar, Rudinger, and Van

Durme (2018), and Tsuchiya (2018) discover and analyze incidental artifacts in SNLI that

permit the success of heuristic strategies. Previous work (Bentivogli et al., 2016; Lai &

Hockenmaier, 2014) has also studied the statistical structure of other datasets for NLI.

Kang, Khot, Sabharwal, and Hovy (2018) and Jia and Liang (2017), among others, study

adversarially augmented training in a natural language setting. None of these approaches,

however, manipulate the properties of the resulting learned representations, or bridge

these insights with our understanding of systematic generalization in human cognition.

3. A test dataset of minimal cases: The Comparisons dataset

Our goal is to understand the representations and decision criteria learned by InferSent,

in particular how much systematic relational information they encode and utilize—do

they represent abstract rules for the ways words combine to give meaning to sentences?

In the machine learning literature on natural language processing, any performance above

the BOW baseline (that only receives the words in the sentence with no order informa-

tion) is often seen as proof of the encoding and utilization of relational information. How-

ever, this is an unwarranted conclusion—the BOW baseline usually receives only

averaged word vectors for the sentence, and therefore also loses some of the lexical infor-

mation. It often does not actually reach the best possible performance with only the

words. Performance above this baseline therefore does not license the conclusion that

relational information is being encoded and used at all. A central goal of this paper is to

better test whether sentence representations encode abstract, systematic rules about the

relations between words in a sentence.

Here, we pursue an alternative approach, inspired by traditions in cognitive psychology

and psycholinguistics of building diagnostic test sets to investigate the underlying repre-

sentations and decision rules. The goal is to generate a set of sentence pairs such that

encoding the relations between words (in addition to the words themselves) is required to

correctly classify them into the three NLI classes. Diagnostic test datasets such as these,

that posit a hard baseline for performance without relational information, provide a more

foolproof way to test whether such information is being used.

We considered pairs of sentences such that the NLI relation between the sentences can

be changed without changing any of the words in the sentence, only their order. We gen-

erated our test dataset using comparisons as these are easy to fit into the NLI framework,
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and they yield many simple examples of sentence pairs that require more than word-level

data to understand. For example, the premise sentence “The woman is more cheerful than

the man” contradicts one hypothesis sentence, “The woman is less cheerful than the

man,” but entails another hypothesis sentence, “The man is less cheerful than the

woman.” Since both hypothesis sentences have the exact same words, they would be

indistinguishable if we were just comparing their BOW representations. Therefore, a

model based only on the words, and not considering the relations between them, would at

most get one of the two classifications right. This caps the BOW performance at 50% ,

and some relational rules must be learned to perform above this baseline.

Generation of several such sentence pairs can be easily automated. We considered

three subtypes, described below and summarized in Table 1. The entire dataset consisted

of 14,670 sentence pairs of each kind, giving a total size of 44,010 sentence pairs.

3.1. Same type

Premise–Hypothesis pairs differ only in the order of the words.

Premise: The woman is more cheerful than the man.

Hypothesis: The man is more cheerful than the woman.

CONTRADICTION

Premise: The woman is more cheerful than the man.

Hypothesis: The woman is more cheerful than the man.

ENTAILMENT

3.2. More-less type

Premise–Hypothesis pairs differ by whether they contain the words “more” or “less.”

Premise: The woman is more cheerful than the man.

Hypothesis: The woman is less cheerful than the man.

CONTRADICTION

Premise: The woman is more cheerful than the man.

Hypothesis: The man is less cheerful than the woman.

ENTAILMENT

3.3. Not type

Premise–Hypothesis pairs differ by whether they contain the word “not.”

Premise: The woman is more cheerful than the man.

Table 1

Rules in Comparisons dataset for premise: X is more Y than Z

Type Entailment Hypothesis Contradiction Hypothesis

Same X is more Y than Z Z is more Y than X

More-Less Z is less Y than X X is less Y than Z

Not Z is not more Y than X X is not more Y than Z
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Hypothesis: The woman is not more cheerful than the man.

CONTRADICTION

Premise: The woman is more cheerful than the man.

Hypothesis: The man is not more cheerful than the woman.

ENTAILMENT

To facilitate comparison with the SNLI dataset, we ensured that the vocabulary distri-

bution of our Comparisons dataset is similar to the original SNLI training dataset.2 This

ensured that we are only manipulating the relational structure of the test set, and poor

performance cannot be attributed to not having experienced the specific words before.

4. Testing the sentence embeddings

We tested the two classifiers based on two different sentence embeddings (the Infer-

Sent sentence embeddings and the BOW sentence embeddings) on the constructed test set

(the Comparisons dataset, Table 1). Both of these classifiers were trained for the same

task (NLI), on the same training dataset (SNLI), with the same classifier architecture, and

differed only in the model used to generate the underlying sentence representations. The

InferSent embeddings had access to word order, while the BOW embeddings did not (for

details, see Section 2.3). The overall performance of each of the two classifiers on the

Comparisons dataset are given in Table 2, and they are analyzed in greater detail in the

following sections.

4.1. Performance of bag of words

We found that the BOW embeddings make classifications that are exactly symmetric

across the two true labels (entailment and contradiction) in each task (rows in Fig. 2).

This is expected since the sentence pairs with one label are just permuted versions of the

sentence pairs with the other label. Therefore, BOW cannot distinguish them and neces-

sarily classifies both of them the same way. This also ensures that the performance is

capped at 50% . Asymmetry between the classifications of the two categories can occur

only when relational information is encoded in the sentence embedding.

Considering the aggregate performance of BOW in Table 2, we found that perfor-

mance, particularly on the “more/less” type subset of the test dataset (30:24% ), was sig-

nificantly below 50% . This highlights the trouble with using BOW embeddings as a

Table 2

Performance on the Comparisons dataset

Type BOW InferSent

Same 50.0 50.37

More/less 30.24 50.35

Not 48.98 45.24
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baseline for the encoding and use of relational information. Up to 50% performance is

achievable on this dataset without using any relational information; therefore performance

above the BOW baseline of 30:24% does not necessarily imply the use of relational

information.

4.2. Performance of InferSent

The performance of the InferSent embeddings was slightly asymmetric (Fig. 3), indi-

cating that it was able to distinguish sentences slightly, based on relational information.

Yet overall the InferSent embeddings were extremely poor at this task (Table 2), achiev-

ing performances slightly above 50% for two of the three subtypes of sentence pairs in

the Comparisons dataset, and even less than 50% in a third subtype. This indicates that

InferSent embeddings do not correctly encode and utilize the kinds of abstract relational

rules we tested with the Comparisons dataset.

However, InferSent’s performance on another test dataset (the SNLI test dataset) is as

high as 84%—so it is clearly encoding some relevant information about NLI. Further, a

quick glance at Fig. 3 indicates that InferSent does not respond randomly to the queries

in our Comparisons dataset, but rather in some structured (though incorrect) way. Rather

than simply conclude that InferSent embeddings are not systematic and leaving things at

that, we can study patterns in the incorrect classifications made to better understand the

underlying representations and decision rules. Since our test dataset is highly structured,

it allows a controlled way to generate and test hypotheses about the heuristic representa-

tions and decision rules InferSent implements.

Aside from isolating and characterizing these heuristics, it is also instructive to con-

sider how InferSent might come to encode them in the first place. To answer this, we

look to the study of heuristic strategies in humans. The theory of ecological rationality

(Simon, 1991; Todd & Gigerenzer, 2007) posits that a system can exploit structural regu-

larities in its learning environment by using heuristics that achieve close to optimal per-

formance in that specific environment. While there might be several predictive cues that

permit good performance in a given environment, ecological rationality suggests that

intelligent systems will pick up on the cues that allow the “simplest” heuristics, heuristics

that can be much simpler than the most general strategy that performs well in all environ-

ments. Heuristics that leverage these (incidental) structural regularities are therefore

Fig. 2. BOW embedding confusion matrices, with normalized rows.
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termed “ecologically valid” in that environment. This suggests that we can better under-

stand how heuristic strategies might arise in InferSent by examining if they are ecologi-

cally valid in its “learning environment” (i.e., the training set). In the following sections,

we delve into the heuristic strategies that explain performance on our Comparisons data-

set, as well as how InferSent might have come to encode them, by testing their ecological

validity in the SNLI training dataset.

4.2.1. Overlap heuristic
We note in Fig. 3 that almost all the sentence pairs in the same-type comparisons were

classified as entailments, despite half of them being true contradictions. A distinguishing

feature of the same-type comparisons is that the premise and hypothesis sentences have

full word overlap (they both contain exactly the same words). This observation allows us

to hypothesize an overlap heuristic: High overlap in words between premise and hypothe-

sis biases InferSent against classifying the pair as a contradiction.

While we have seen some evidence that this heuristic is indeed at play (based on the

performance on the same-type comparisons), the question remains as to why it encodes

this rule. With our knowledge of language, we know this simple rule to reflect on incor-

rect understanding of NLI. However, all the knowledge about the NLI task that InferSent

encodes is from its training dataset. If the dataset has underlying structural regularities

that can be exploited by simple heuristic strategies, then a tabula rasa model for NLI such

as InferSent that is trained on this dataset will learn to encode it.

We carried out an analysis of the SNLI dataset to determine if the overlap heuristic is

ecologically valid in it. First, we observed anecdotally that indeed several contradictory

sentence pairs have relatively little overlap in words. For example, a contradictory sen-

tence pair in SNLI is:

Premise: Several people are trying to climb a ladder in a tree.

Hypothesis: People are watching a ball game.

CONTRADICTION

To quantitatively verify this observation, we ranked all the sentence pairs in SNLI by

overlap rate: # of overlap words
total# of words (in non-increasing order). We then considered the top X sen-

tences with highest overlap for different Xs. As shown in Table 3, when considering the

full dataset, the distribution is balanced (the percentage of entailments, contradictions,

Fig. 3. InferSent embedding confusion matrices, with normalized rows.
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and neutral sentences are equal). However, we found that as the word overlap in the sen-

tences increases, the percentage of contradictions drops. When considering only the top

1,000 sentence pairs for overlap, we found that 91:5% of them have entailment or neutral

labels, with only the remaining 8:5% having a contradiction label.

It is therefore natural that InferSent encodes the simple overlap heuristic as a predictor

against contradiction. This explains not only the failure of InferSent to generalize its good

performance on SNLI to the same-type comparisons in our test dataset, but also matches

the specific failure mode we observe in its responses.

4.2.2. Antonyms heuristic
We note in Fig. 3 the opposite trend for the more/less-type comparisons, where almost

all the sentence pairs were classified as contradictions, despite half of them being true

entailments. A distinguishing feature of the more/less-type comparisons is that the pre-

mise and hypothesis always differ by one word—if the premise contains the word “more”

(“less”), then the hypothesis always contain the word “less” (“more”). This observation

allows us to hypothesize an antonyms heuristic: Sentences differing in the presence of

words that have opposing meanings (antonyms) tend to be classified by InferSent as con-

tradictions, irrespective of the other words or their order in the sentence.

Similar to the previous section, we investigated the training dataset to elucidate if this

heuristic is ecologically valid in InferSent’s training set. Anecdotally, we saw that the

contradicting hypotheses provided by crowd workers to generate SNLI do follow this pat-

tern. For example, a contradictory sentence pair in SNLI is:

Premise: A man in a white t-shirt takes a picture in the middle of the street with two

public buses in the background.

Hypothesis: A man is wearing a black t-shirt.

CONTRADICTION

To verify this observation quantitatively, we analyzed the statistics of antonym usage

in SNLI. To test whether a sentence pair (A,B) contains antonyms, we went through each

word in sentence A, and considered all synonyms of that word, and considered all anto-

nyms of those synonyms. Finally, we checked if sentence B contained any of those anto-

nyms. These synonyms and antonyms were found using the NLTK WordNet software

(Bird & Loper, 2004). We then considered two different statistics. First, we calculated P

(Contradiction | Antonym), which is the probability that a sentence pair is a contradiction

given that its premise and hypothesis contain an antonym pair. This measures how well

the presence of antonyms predicts a contradiction label in the training set. Second, we

Table 3

Percentage of entailments split by overlap rate of words in SNLI

Top Entailment Neutral Contradiction

All 33.4 33.3 33.3

10,000 39.5 35.7 24.8

1,000 50.8 40.7 8.5
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calculated P(Antonym | Contradiction), which is the probability that a contradictory sen-

tence pair contains antonyms. This measures how well a contradiction label predicts anto-

nyms. Both statistics were compared with the equivalent statistic for entailment, to

provide a baseline for comparison. Table 4 shows that the presence of antonyms strongly

predicts a contradiction label in the SNLI dataset (61.2% compared to chance at 33.3%).

We also found that a contradiction label predicts the presence of an antonym pair

(12.2%) more strongly than entailment did (3.5%). This indicates that the antonyms

heuristic can explain significant variance for the contradiction label in the training set.

Since most of our Comparisons dataset contained a large amount of overlap between

premise and hypothesis, the rules InferSent applies when responding to these test ques-

tions might be biased toward those learned in similar high overlap settings during train-

ing. We checked the statistics of antonymy in the high overlap subset of SNLI (top

10,000 highest overlap) to provide a closer comparison (Table 5). Here, contradiction pre-

dicts the presence of an antonym pair (43.7%) more strongly than in the whole dataset

(12.2%). The difference between P(Antonym | Contradiction) and P(Antonym | Entail-
ment) is also more pronounced in this high overlap subset. The presence of an antonym

pair no longer predicts contradictions at a high rate (28.9%), but this is possibly due to

the very low base rate of contradictions in the high overlap subset of SNLI, as compared

to entailments.

These results suggest again, that the underlying statistics of the SNLI dataset allow

models, including InferSent, to perform well with simple lexical heuristics that ignore the

order of words and their relations.

4.2.3. Negation heuristic
We see in Fig. 3 that the not-type comparisons are preferentially classified as contra-

dictions. A distinguishing feature of the not-type comparisons is that the premise and the

hypothesis differ by the presence of the negation “not.” This observation allows us to

hypothesize a negation heuristic where sentence pairs that differ in the presence of nega-

tions are preferentially classified as contradictions.

Following procedures analogous to previous sections, we first noted anecdotally, that

this heuristic seems to have validity in the contradicting hypotheses in SNLI. For exam-

ple, a contradictory sentence pair in SNLI is:

Premise: Men turn to the camera to smile on the middle of three long tables in a refec-

tory.

Hypothesis: The man is not smiling.

CONTRADICTION

Table 4

Percentage of entailments split by antonym word pair in the SNLI dataset

P (Antonym j X) P (X j Antonym)

X = Contradiction 12.2% 61.2%

X = Entailment 3.5% 18.0%
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We verified this observation quantitatively by looking at the statistics for negation in

SNLI. We collected all sentence pairs that contain “negating N-grams”: no, not, n’t (by

considering “n’t,” we included words such as “don’t” or “doesn’t”). We then carried out

analyses similar to the previous section, where we checked (a) the predictive power of

negations on contradictions (P(Contradiction | Negation)), and (b) the predictive power of

contradiction on negations, P(Negation | Contradiction), and compare both of these to

statistics for entailment as a baseline. We found (Table 6) that the presence of a negation

strongly predicts contradiction in the SNLI dataset (58.4% compared to chance at

33.3%). We also found that while both numbers are very low, a contradiction predicts the

presence of a negation (3.3%) slightly more strongly than entailment does (1.1%). We

also carried out the same analysis for a high overlap subset (top 10,000 highest overlap)

of SNLI to maximize similarity with our Comparisons dataset and saw similar results

(Table 7). In fact, the presence of negation predicts a contradiction, P(Contradiction |
Negation) = 60:0% , at rates comparable to that in the full dataset, P(Negation | Contra-
diction) = 58:4% , despite the much lower base rates of contradiction in this subset of the

data. This indicates strong ecological validity for this heuristic in the high overlap subset

of the SNLI dataset.

4.3. Summary of heuristics

We found evidence for three heuristics that explain the bulk of the patterns seen in the

performance of InferSent on our Comparisons dataset, all of which are ecologically valid

in the SNLI dataset. First, we identified the overlap heuristic where a large overlap in

words between two sentences leads InferSent to not classify them as contradictions. Sec-

ond, we identified the antonyms heuristic and the negation heuristic, where the premise

and hypothesis differ in the presence of an antonym or a negation, which leads InferSent

to classify them as contradictions.

These illustrate a disproportionate dependence on lexical (rather than relational) mean-

ing in the representations and decision rules used by InferSent. While these heuristics

serve well in certain domains, for example in SNLI, they do not amount to a more gen-

eral encoding of entailment and contradiction between sentence pairs, as evidenced by

InferSent’s poor performance on our Comparisons dataset.

The analysis so far has highlighted word-level heuristics that InferSent might be using.

Yet the confusion matrix results (Fig. 3) show a slight asymmetry, indicating at least

minor multi-word effects. This suggests that InferSent might be using some (potentially

also heuristic) encodings for word order. However, a systematic analysis of the effect of

Table 5

Percentage of entailments split by antonyms in high overlap SNLI subset

P (Antonym j X) P (X j Antonym)

X = Contradiction 43.5% 28.9%

X = Entailment 8.7% 34.3%
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word order, and how much variance such heuristics might explain, is challenging due to

the combinatorial explosion in the number of possibilities. We leave a thorough investiga-

tion of this to future work.

5. Augmenting the learning environment

The foregoing results suggest that such ecological validity of simple heuristics in the

SNLI training data (InferSent’s learning environment) could explain why InferSent

acquires them over a more abstract, systematic representation of the relations between

words in a sentence. This leaves open the question of whether architectures such as Infer-

Sent are capable of learning the abstract relational rules needed to succeed at our task

given a different training set where simple heuristics no longer explain so much of the

variance. RNN architectures like the one in InferSent can in theory represent the rela-

tional structure required to encode the abstract rules of the sort in Table 1 (for details,

see Section 2.3). But how might we get them to learn and use them? In this section, we

explore this question by training the InferSent model on part of the Comparisons dataset,

and testing on a held-out subset of it. This serves to test whether simple training on

examples of the rules in Table 1 will enable InferSent to encode some abstract relational

rules.

The total training subset of our Comparisons dataset consists of 40k sentence pairs

(7% the size of the 550k pair SNLI training set). Validation and test sets consist of 2,000

sentence pairs each. There are no overlapping sentence pairs between any of these sets;

therefore, simply memorizing the training set will not allow good test performance. Good

test performance requires the encoding and utilization of an abstract relational rule.

We started with the original InferSent embeddings already trained on the SNLI dataset,

and then fine-tuned these by training them on our new Comparisons dataset (using the

Table 6

Percentage of entailments split by negation in SNLI dataset

P (Negation j X) P (X j Negation)
X = Contradiction 3.3 58.4

X = Entailment 1.1 20.0

Table 7

Percentage of entailments split by negation in high overlap SNLI subset

P (Negation j X) P (X j Negation)
X = Contradiction 1.3 60.0

X = Entailment 0.1 7.5
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same protocols used in Conneau et al., 2017, to train InferSent). Results are shown in

Table 8. We found that using this method, performance on the SNLI data task degrades

over the course of fine-tuning on the new Comparisons dataset from 84.84% to 56.37%.

This points to over-fitting to the Comparisons data, at the cost of representing information

necessary for SNLI. We found, however, that performance on the Comparisons test set is

much higher (99.8%) than when trained only on SNLI (47.81%). Note that this test set

consists of sentence pairs InferSent has never seen before. We thus find that the model

architecture for InferSent, given the right training data, can encode some form of abstract

relational structure that allows it to learn rules of the form in Table 1 and apply them to

new sentence pairs—in particular sentence pairs with Xs, Ys, and Zs that it has never

seen in that combination before.

Sequential training on different kinds of inputs (like the fine-tuning procedure above)

is known to induce catastrophic forgetting in neural-network models (French, 1999),

where solutions to previous tasks are overwritten by solution to new tasks. One possible

remedy is to interleave training rather than train sequentially on different kinds of inputs

(McClelland, McNaughton, & O’Reilly, 1995; for other approaches to combat catas-

trophic forgetting, see also Kirkpatrick et al., 2017; McRae and Hetherington, 1993). To

check whether InferSent can represent this relational structure without losing the informa-

tion necessary for SNLI, we started with an untrained network, and then trained on an

augmented version of the original training data. Here, examples from the SNLI training

set were randomly interleaved with examples from our Comparisons training dataset (by

choosing examples uniformly at random across the joint training set consisting of both

datasets), otherwise using the same training protocols reported in Conneau et al. (2017).

The test results are reported in Table 9. We found that the accuracy obtained this way on

the SNLI test set (84.96%) is comparable to the model trained only on SNLI (84.84%).

Moreover, test accuracy on the Comparisons dataset is close to perfect (99.55%) and is

much higher than the model trained only on SNLI (47.81%). This establishes that in this

case the model has enough capacity to achieve high performance on specially designed

edge cases like the Comparisons dataset, without loss of performance on the more general

SNLI dataset.

Finally, we wanted to investigate the number of sentence pairs from the Comparisons

dataset that would be required in the training set to achieve good performance on the

Comparisons test set. The full size of the training set from our Comparisons dataset con-

sists of 40k sentence pairs. In the experiments above, we include this entire dataset when

Table 8

Results of fine-tuning InferSent on the Comparisons dataset

Epoch
Performance (%)

Train(Comp) Test(Comp) Test(SNLI)

0 47.81 45.36 84.84

13 99.91 99.8 56.37
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training InferSent; we now vary the percentage of this full training set that is included

during training. The results from this are presented in Table 10. The training accuracy of

all these runs (on the combined training data, including SNLI and varying numbers of

Comparisons pairs) is around 90% . We see that including only 1k pairs from the Com-

parisons training set improves performance on the Comparisons test set slightly (from

45:36% to 58:91% ), but still gives very poor performance overall. This indicates that

with only 1k examples in its training set, the model does not generalize well to new com-

binations of nouns. However, performance steadily increases as the number of Compar-

ison examples in the training set increase, hitting close to ceiling performance at about

10k sentence pairs. The final 30k sentence pairs (going from 10 to 40k examples in the

training set) increase the test performance on the Comparisons test set, from 98:7% to

100:00% . Note that despite the number of training examples increasing, we keep the test

set constant, and it is constructed such that the model has never seen the sentences in this

test set during training.

This result also verifies that the heuristics we find in the original InferSent are an eco-

logically rational response to a training environment that licenses these “shortcut” strate-

gies, and not because of shortcomings in representational or learning abilities of the

model itself. This points to the benefits of understanding the learning environment in

greater detail, and potentially including specially designed data to guard against incorrect

heuristics that do not generalize. Research on the generation of adversarial examples tar-

gets this intuition. The idea is to have a separate “adversarial” model that generates edge-

case training examples optimized to try and fool the main model into giving the wrong

answer (Goodfellow, Shlens, & Szegedy, 2014; Zhao, Dua, & Singh, 2017). It does so by

generating examples that violate the heuristics the main model has learned from training

thus far. Subsequently, the training environment for the model is augmented to include

these edge cases, making the current heuristics no longer ecologically valid. The main

model therefore updates its representations and decision rules accordingly and the process

is continued. Our work provides some insight into how we can leverage a top-down

understanding of the structure of language and systematic stimulus design, to generate

such edge-case training data and potentially improve the representations learned by

machine-learning systems.

Table 9

Results of retraining Infersent on both SNLI and the Comparisons dataset

Epoch
Performance (%)

Train (Combined) Test (Comp) Test (SNLI)

0 33.21 0.00a 32.77

12 90.99 99.55 84.96

aThe untrained InferSent model (using the default initialization procedure in PyTorch) classified almost all

sentence pairs as neutral. This gives rise to chance accuracy on SNLI since roughly 33% of these examples

are true neutral, and 0% accuracy on Comparisons because there are no true neutral pairs.
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A key hurdle for the scalability for such augmentation as a solution to improving artifi-

cial representations of language, however, is that there are an infinite number of possible

stimuli, with brand new combinations of words that may never have been encountered

before. No finite amount of augmentation will allow a system to represent and process

this infinite space of natural language sentences unless it can also generalize its knowl-

edge gained from the examples observed thus far to new examples. In this section we

saw that InferSent can generalize rules like those in Table 1 to never previously observed

combinations of X, Y, and Z to perform well on the test set of the Comparisons dataset.

In the following sections we further discuss the generalization capacities of the represen-

tations learned by InferSent, and we focus in particular on their differences and similari-

ties to human generalization.

6. Generalization

An important and well-studied aspect of human-like representations is that rules

learned with one set of tokens can be systematically generalized to other tokens (Fodor &

Pylyshyn, 1988; Lake et al., 2019). In Section 6.1 we study if our machine-learned repre-

sentations can perform such generalization to tokens that have never previously been

observed. More often, however, the tokens to which we want to generalize learned rules

have previously been observed, but simply in a different context. The historical contexts

of tokens can determine some of their properties—like syntactic category and semantic

content—which in turn inform how humans generalize rules to them, sometimes deviating

from entirely systematic generalization. In Section 6.2 we examine how the historical

context of tokens influences systematic generalization in our machine-learned representa-

tions, and how these effects compare to those in humans.

Throughout this section, we will only consider sentence pairs that are similar in struc-

ture to ones in our Comparisons dataset, and we will no longer consider performance on

SNLI. We will predominantly be studying the model that has been trained jointly with

our Comparisons dataset in addition to SNLI (referred henceforth to as the augmented-

InferSent model).

Table 10

Results of training Infersent on SNLI and varying number of pairs from the Comparisons dataset

Comp Pairs in Training
Performance (%)

Test(Comp) Test(SNLI)

0 45.36 84.84

1,000 58.91 84.41

5,000 86.52 84.03

10,000 98.7 84.34

40,000 100.00 84.96
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6.1. Zero-shot reasoning

Zero-shot reasoning is the ability to solve tasks involving a term that has never been

seen before. This (often also called zero-shot learning) has commonly been used as a test

for systematicity (Lake et al., 2017)—a human can carry out inferences like “Anne is

more boffy than Bob” entails that “Bob is less boffy than Anne” without ever having

encountered the word “boffy” before.

But this ability requires the representation learned to be abstract, and not be tied to the

Xs, Ys, and Zs seen in training. Instead, it has to encode an abstract relational rule where

“X is more Y than Z” entails “Z is less Y than X” for all possible X, Y, and Z, irrespec-

tive of their specific values. If the representations are tied to the observed values of Xs,

Ys, and Zs and cannot generalize to new values for these, each possible X, Y, and Z has

to have occurred in the training dataset. However, these can be arbitrarily complex (e.g.,

“The old woman with a flower in her hair is more deliriously happy than the tall young

man wearing the blue bowler hat” implies that “The tall young man wearing the blue

bowler hat is less deliriously happy than the old woman with a flower in her hair”).

Ensuring that every possible such X, Y, and Z have been seen in the training data is

impossible, and this kind of generalization is key to human-like language understanding.

In this section we consider the performance of the augmented-InferSent model. We

already know that this model performs well on SNLI, and generalizes to new combina-

tions of X, Y, and Z in our Comparisons dataset (see Table 9), where each X, Y, and Z

have previously been seen. In this section, we analyze its ability to generalize to three

different kinds of Xs and Zs that have never been encountered during training.

1. Held out nouns: Nouns (from the GloVe dataset) that never occur in the training

data (neither SNLI nor our Comparisons dataset).

2. Made up “words”: Directly using a 300 dimensional vector randomly sampled from

an uncorrelated Gaussian distribution, as a stand-in for a real GloVe vector.

3. Long noun phrases: The Xs and Zs used in training as part of the Comparisons

dataset were of the type “the man.” Here we generate longer noun phrases of the

form “the grumpy man in front of us” consisting of randomly sampled adjectives,

nouns, and prepositional phrases.

4. Very long noun phrases: To test how far our system generalizes, we also test on

extremely long noun phrases. Here we chain four adjectives to the front of the noun

and add a modifier phrases to the end. An example is: “the tall funny agreeable old

man sitting on the chair.” If the system is abstracting “rules” at the level of noun

phrases, it should succeed at this test, but if the abstraction is based on single words,

this test should be more difficult.

For each subtype in the Comparisons dataset (same, more-less, and not types), we gen-

erated a test set of 1,000 sequences by substituting Xs and Zs of the above kinds. The Ys

were sampled in the same way as in the Comparisons dataset (random adjectives that

appear in SNLI). We then tested on these sentences and reported the average accuracy.

Note that not only had these specific sentences (combinations of X, Y, and Z) never been

seen during training, even the individual Xs and Zs had not been seen. We found that
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InferSent generalizes to all three new kinds of Xs and Zs quite well (Table 11). The

held-out nouns are the most similar to the Xs and Zs seen during training since they are

also exactly one word and are nouns sampled from GloVe. It is notable that generaliza-

tion performance with these is comparable to that with the very different kinds of Xs and

Zs such as the made-up words, or longer noun phrases, indicating a fairly abstract repre-

sentation of relational rules that are not tied to the specific value of X and Z. However,

generalization performance for the very long noun phrases, which are similar but require

greater long-distance coherence, drops significantly, indicating that this zero-shot general-

ization does not abstract over complex noun phrases in general.

These results indicate that the representation learned by augmented-InferSent is par-

tially abstract and composable, allowing some degree of systematic generalization to a

variety of Xs and Zs that have never been seen before. In the next section we further

probe contextuality of generalization and how that interacts with the training set/learning
environment, making comparisons to human generalization.

6.2. Context-tying

We saw in the previous section that augmented-InferSent has some of the central

human-like capacity of zero-shot reasoning. This indicates some systematicity in its repre-

sentations. However, even humans do not always succeed at fully systematic generaliza-

tion. In this section we investigate these exceptions and qualifications to the widest

interpretation of systematic generalization, focusing on the role of context in generaliza-

tion. We do this in two ways: using type violations and biased exposure.

6.2.1. Type violations
One extreme of learning a purely abstract rule like in Table 1 is to be completely

insensitive to any properties of the Xs, Ys, and Zs, and generalize this rule to all possible

tokens. However, this very strong generalization may not always match human intuitions.

For example, the sentence pair

Premise: The punctual is more cheerful than the man.

Hypothesis: The punctual is not more cheerful than the man.

does not seem to have a right answer. The rule applies easily only to Xs, Ys, and Zs

that are of the right type—in this case the right syntactic category.

Table 11

Zero-shot reasoning: Performance on previously unobserved Xs and Zs

Test Set InferSent (%) Augmented-InferSent (%)

Held-out nouns 47.9 82.0

Made up words 48.0 83.2

Long noun phrases 49.1 84.9

Very long noun phrases 49.7 59.3
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While syntactic structure is not directly provided to the embedding model, some notion

of syntactic category will be implicit. Information about the syntactic category of a word

can be gleaned from its contexts, that is, the other words around it (Chomsky, 1993; Red-

ington et al., 1998; Socher, Manning, & Ng, 2010), and in some cases can be decoded

from word embeddings directly (Pennington et al., 2014).

We investigated generalization of rules in augmented-Infersent to test items which,

unlike in the previous section, had been previously seen, but had only occurred in a

different syntactic role (i.e., a different context). We generated a test set of ungram-

matical sentences using Xs and Zs that are random non-nouns, in our case random

adjectives from SNLI. Crucially, these words had been seen before, but never in the

position/context that X and Z occupy in the Comparisons dataset, since appearing in

those positions violates syntax. We then evaluated the performance of the augmented-

InferSent model in the same way as in the previous section on zero-shot generaliza-

tion. We found that accuracy on such sentence pairs is low, giving poor performance

(Table 12). This indicates that the rules learned, though at least partially abstract as

indicated by generalization to held-out nouns, come with restrictions on the type of

(known) items they will apply to. This follows closely how humans generalize—that

learned rules do not generalize indiscriminately to all tokens, but rather only within

some fixed categories. These categories in turn, like syntactic categories, can be

gleaned from the contexts in which these tokens usually appear. In the next section,

we examine the role of semantic content in the context of tokens, and how that influ-

ences generalization.

6.2.2. Biased exposure
In this section, we manipulate the context of various tokens, without violating the syn-

tactic rules, to study its effect on generalization. In all the augmentations we have used

so far, some token X is equally likely to occur in the context of a same-type sentence

pair as it is in the context of a more/less-type sentence pair. Similarly, X is as likely to

occur in the context where it is “more cheerful than the man” as it is to occur in the con-

text where it is “less cheerful than the man.” Therefore, aside from the restrictions of

syntactically correct placement, there is no additional structure around which contexts

which tokens occur in—they are all randomly distributed. However, in the real world,

tokens are not uniformly sampled into contexts even within constraints of syntax; a word

is much more likely to be sampled repeatedly in certain contexts than others. This is

because the appearance of tokens in naturally occurring sentences is not determined

solely by their syntactic role, but also by their semantic role. For example, one is much

more likely to encounter the sentence “Broccoli is more nutritious than candy” than the

sentence “Candy is more nutritious than broccoli,” since one is true of the real world,

and the other is not. Nonetheless, the premise “Candy is more nutritious than broccoli”

still logically entails the hypothesis “Broccoli is less nutritious than candy.” Statistics of

how often certain implications and inferences are made in the learning environment (that

will be reflected in semantic beliefs about the real world) can interfere with such logical

inferences in humans in both deductive (Evans, Barston, & Pollard, 1983) and
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probabilistic (Evans, Handley, Over, & Perham, 2002) reasoning. This is often termed

“belief bias.”

In this section, we test if the representations we are studying exhibit belief bias. We

manipulate the uniformity in the co-occurrence of tokens with contexts (subject to syntac-

tic constraints), and we examine if a newly augmented InferSent model can generalize a

token it has seen in one context, to cases where it appears in a different context. We

compare this to a zero-shot control condition, where the test token has never been seen

before.

To this end, we first generated variants of our Comparisons dataset where tokens are

no longer uniformly sampled into contexts. We considered only two subtypes of the com-

parison types summarized in Table 1: the same-type (C2) and the more/less-type (C1).

These constitute the two contexts C1 and C2 in which tokens can appear. Noun phrases

were generated using the same procedure used for the long noun phrases in the section

on zero-shot reasoning—phrases (tokens) of the form “The grumpy man in front of us.”

These tokens were then randomly divided into T0-type and T∗-type (460 each). There-

fore, there is no structural difference between the T0 and T∗ tokens, only the context in

which they are seen will differ across conditions.

We built four sets of sentence pairs that vary in their context–token combination: C2T
0

consisted of combinations of T0 tokens in a C2 context, so on and so forth for C2T
∗,

C1T
0, and C1T

∗. Each such context–token combination set was independently divided

into train and test sets (each of size 5,000). The sentence pairs in each of the four test

sets had never been seen before in any of the four training sets.

We augmented the original InferSent embeddings with different combinations of sam-

ples from the four different train sets.3 We then compared their performance on all four

of the test sets to examine how different context–token combinations seen during train-

ing influenced test generalization. The three different embeddings that result are as fol-

lows:

1. Zero-shot control condition: Only the T0 tokens were seen in training; no T∗ token

were seen at all. Therefore testing with tokens from T∗ is analogous to zero-shot

reasoning. The training set consisted of the full training sets from C1T
0 and C2T

0.

2. Experimental conditions: Both T0 and T∗ tokens were seen in training, therefore

testing with tokens from T∗ is not analogous to zero-shot reasoning. However, the

contexts in which T0 and T∗ tokens appear during training differed. There are two

different embeddings we trained of this kind.

Table 12

Type violations: Performance with tokens from the wrong syntactic category, versus with held-out tokens

from the right syntactic category

Test Set InferSent (%) augmented-InferSent (%)

Held-out nouns 47.9 82.0

Non-noun words 47.9 49.3
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a. Exposed—C1T
∗: This embedding saw T0 tokens in both C1 and C2 contexts (as with

the control condition), and additionally also saw T∗ tokens—but only in the C1 con-

text. In order to balance the number of training examples from each context between

conditions, the training set consisted of the full training sets from C2T
0 and half

(randomly selected) of the training set from each of the C1T
0 and C1T

∗ context–to-
ken combination sets.

b. Exposed—C2T
∗: This embedding saw T0 tokens in both C1 and C2 contexts, but

saw T∗ tokens only in the C2 context. The training set was balanced across contexts

here as well.

All three models received the same number of training examples, with equal numbers

of sentence pairs from both contexts C1 and C2. They all also saw T0 noun phrases

appear in both contexts. The three models only differed in which contexts T∗ noun

phrases appeared during training. The control model never saw T∗ noun phrases, Exposed

—C1T
∗ only saw them in the C1 context and Exposed—C2T

∗ only saw them in the C2

context. All of these were then tested on the same held-out test set. We see from

Table 13 that all three models generalize well to held-out test examples involving previ-

ously unobserved combinations of T0 noun phrases in both contexts (first row). This is

consistent with our initial results on augmentation (see Section 5). Further, the control

(zero-shot reasoning) condition that never saw noun phrases in training generalizses well

to all the test examples with noun phrases (first column). This is consistent with our

results on zero-shot generalization (see Section 6.1).

We now turn to generalization performance when tokens were seen before but only in

a specific context (second and third columns in Table 13). We discuss the results for the

model Exposed—C1T
∗ (that saw T∗ noun phrases in C1 type comparisons), a symmetric

discussion applies also to Exposed—C2T
∗. We found that Exposed—C1T

∗ performs well

on held-out test examples from the C1T
∗ category (99.7%)—as consistent with our origi-

nal experiments with augmentation. However, we found that it fails to generalize very

well to T∗ type noun phrases in the C2 context, with a significant drop in performance

(67.71%). The crucial comparison is that this low performance is also significantly worse

than that of the zero-shot control on the same test set (95.78%). Neither of these has seen

T∗ phrases in the C2 context—yet the control generalizes very well, while the Exposed

—C1T
∗ fails to. This indicates that while the representations learned can generalize well

to previously unseen tokens, this generalization is poorer to tokens that have in fact been

seen before, but only in a different context.

This indicates that our representations do learn something akin to belief bias, where

the context in which tokens have been seen (even within the right syntactic category) can

influence how abstract logical rules (like in Table 1) generalize to them. This suggests

potential directions for research on modeling how belief bias in humans arises. However,

it is crucial to point out that although humans do exhibit such context-tying, the effects

are mostly observed in children (Evans & Perry, 1995) and under time pressure/cognitive
load (Evans & Curtis-Holmes, 2005). The coexistence of such a fast heuristic strategy

(that potentially suffers from belief bias), and a slower deliberative strategy (that can
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perform abstract reasoning) is a well-studied and popular model for representations and

decision rules in humans (Evans & Curtis-Holmes, 2005; Groves & Thompson, 1970;

Kahneman, 2011). Thus, although people have a tendency toward belief bias, they are

able to overcome it and engage in abstract reasoning, which our machine-learned repre-

sentations cannot do.

This raises a new concern about the scalability of augmentation as a general approach

to learning systematic representations in such tabula rasa machine-learning systems. There

are infinitely many possible sentences that all follow the rules of syntax, so observing

tokens in contexts that one has not often seen them in, but where they are syntactically

valid, is likely to occur often. Our new findings show that while zero-shot reasoning to

previously unobserved tokens works in certain cases, these tabula rasa systems may tie an

observed token to the small fraction of contexts in which it has been seen. This hinders

generalization to cases where this token occurs in a new context. In order for every token

to have been observed in every context, a combinatorially large amount of augmented

training data would be required, potentially making this approach unfeasible for achieving

the kinds of systematic representations humans have.

7. Discussion and future work

In this paper, we carried out a case study in the use of methods from cognitive science

and psycholinguistics to better understand machine-learned representations. We developed

minimal cases in an NLI task that test for some aspects of abstract relational structure in

sentences. We used this diagnostic tool on a large-scale state-of-the-art NLI model (Con-

neau et al., 2017) to not only demonstrate that there is no evidence of abstract compos-

able structure in the sentence embeddings, but also provide insight into the

representations and decision criteria actually learned. This approach led us to isolate the

use of some simple heuristics, which we then traced to structural regularities in the train-

ing distribution. This allowed us to demonstrate the strong effect the training data have

on the representations learned. We then augmented this training environment with so-

called adversarial examples such that simple heuristics like the ones we found are no

longer ecologically valid. We found that such augmentation is one way to lead the system

to learn some forms of abstract relational structure. Notably, we found that one of the

Table 13

Biased exposure: Results from InferSent embeddings augmented with different training sets that manipulate

the co-occurrence of context and token

Test Set
Performance (%)

Zero-Shot Exposed–C1T
∗ Exposed–C2T

∗

C1T
0þC2T

0 97.44 97.02 98.0

C1T
∗ 95.72 99.7 61.16

C2T
∗ 95.78 67.71 99.96

I. Dasgupta et al. / Cognitive Science 44 (2020) 25 of 31



traditional holy grails of systematicity—zero-shot generalization of learned rules to new,

previously unseen words—can be partially achieved with this method. Further tests, how-

ever, revealed limitations in the breadth of this generalization. We found that while zero-

shot generalization to previously unseen words works, generalizations to words that have

previously been seen in a different context suffer. This gives us another measure for the

extent of systematicity in representations—a phenomenon we call “context-tying.” We

discussed the relationship between this effect and findings in human cognitive psychology

where semantic beliefs about the real world can interfere with flexible inferences sup-

ported by abstract logical representations (Evans, 2013). This parallel suggests new ways

to model this psychological phenomenon (Dasgupta, Schulz, Tenenbaum, & Gershman,

2020). The presence of context-tying in the machine-learned representations indicates that

these systems might have to see each word in a wide variety of contexts in order to gen-

eralize it to new contexts, indicating that combinatorially large amounts of augmentation

will likely be required for a tabula rasa unstructured neural network model to learn an

entirely systematic representation from data.

These results suggest many directions for future work. We showed how the issue of

context-tying bodes poorly for the scalability of using only training data augmentations to

achieve human-like systematic representations. Recent work, however, suggests such

adversarial mechanisms in the human brain (Gershman, 2019). This motivates further

research on how this approach might be made more scalable. We studied the representa-

tions learned from a relatively fixed amount of augmentation and training. An important

step forward is to better understand how systematicity in these representations evolves

over the course of augmented training, and exactly how much augmentation is really

needed. Another important problem is to understand what augmentations work best. To

that end, a promising direction is to integrate our approach (where augmentations are

generated using existing knowledge about analogous representations in humans) with

approaches that learn to generate such adversarial augmentations (Goodfellow et al.,

2014; Kang et al., 2018; Zhao et al., 2017). Finally, we did not examine the sentence rep-

resentations directly, but rather via the performance of a downstream classifier trained

end-to-end with the sentence embeddings. Future work should also consider other ways

to directly analyze these representations.

Human infants are not as tabula rasa as models like InferSent but rather encode useful

inductive biases (Chomsky & Lightfoot, 2002; Lightfoot & Julia, 1984; Mitchell, 1980;

Pearl & Goldwater, 2016; Seidenberg, 1997). Building such biases into our models (Bat-

taglia et al., 2018; Dubey, Agrawal, Pathak, Griffiths, & Efros, 2018; Gandhi & Lake,

2019; Lake et al., 2017) is a promising direction toward scalably learning systematic rep-

resentations. We also showed how analysis and controlled testing for heuristic strategies

in the learning environment can provide rich insights into the representations learned.

Such analyses could also be used to improve learning and subsequent performance by

leveraging this underlying structure (Gigerenzer & Todd, 1999; Martignon & Hoffrage,

2002; Şimşek, 2013; Şimşek, Algorta, & Kothiyal, 2016). Finally, we leverage methods

from cognitive psychology to introduce a new structured test dataset (the Comparisons

dataset) as well as a new metric (context-tying) for sentence representations. This
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approach joins other recent approaches (Belinkov & Glass, 2019; Ettinger et al., 2018;

McCoy et al., 2019) in going beyond the traditional single-dimensional metrics of the

aggregate performance achieved on test datasets that match the distribution of training,

and additionally provides insights into the specific kinds of mistakes made. This paves

the path forward to more principled and nuanced ways to benchmark artificial systems

against humans (Lake & Baroni, 2018; Linzen, Dupoux, & Goldberg, 2016). Further, a

metric like context-tying is not bound to the domain of language, and can also be used to

benchmark systematicity in other domains that benefit from abstract compositional repre-

sentations—like scene understanding (Johnson et al., 2016; Ommer & Buhmann, 2009) or

structured planning (Burridge, Rizzi, & Koditschek, 1999; Singh, 1992). Future work

should pursue other such diagnostic metrics, to build toward a comprehensive suite of tes-

table criteria for exactly what constitutes human-like representations, and also to further

inform which aspects of these we wish to emulate in artificial systems.
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Notes

1. The details and implementation of the optimization algorithm also contribute (for

an overview, see Ruder, 2016), but as long as the optimization reaches convergence

this has relatively little effect, and we leave this out of our current discussion.

2. Only a few words differed by more than 1% from their occurrence rate in SNLI,

such as not, a, than, the, is, less, more. This was inevitable given the general struc-

ture of the comparison sentence pairs we use. All of these words however did still

occur in the SNLI training corpus, and were not new to the model at test time.

3. In this experiment we only make comparisons between the performances of differ-

ently augmented models, rather than considering the overall performance like in

previous experiments. The influence on performance from the SNLI training data is

irrelevant since it will affect all four augmented models equally. Therefore, we can

neglect SNLI performance and carry out our experiments using fine-tuned augmen-

tation rather than full retraining (for details on these, see Section 5). This is compu-

tationally a lot cheaper.
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