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Bayesian theories of cognition assume that people can integrate probabilities rationally. However, several
empirical findings contradict this proposition: human probabilistic inferences are prone to systematic devia-
tions from optimality. Puzzlingly, these deviations sometimes go in opposite directions. Whereas some studies
suggest that people underreact to prior probabilities (base rate neglect), other studies find that people
underreact to the likelihood of the data (conservatism). We argue that these deviations arise because the human
brain does not rely solely on a general-purpose mechanism for approximating Bayesian inference that is
invariant across queries. Instead, the brain is equipped with a recognition model that maps queries to
probability distributions. The parameters of this recognition model are optimized to get the output as close as
possible, on average, to the true posterior. Because of our limited computational resources, the recognition
model will allocate its resources so as to be more accurate for high probability queries than for low probability
queries. By adapting to the query distribution, the recognition model learns to infer. We show that this theory
can explain why and when people underreact to the data or the prior, and a new experiment demonstrates that
these two forms of underreaction can be systematically controlled by manipulating the query distribution. The
theory also explains a range of related phenomena: memory effects, belief bias, and the structure of response
variability in probabilistic reasoning. We also discuss how the theory can be integrated with prior sampling-
based accounts of approximate inference.
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Studies of probabilistic reasoning frequently portray people as
prone to errors (Fischhoff & Beyth-Marom, 1983; Grether, 1980;
Slovic & Lichtenstein, 1971; Tversky & Kahneman, 1974). The
cognitive processes that produce these errors is the subject of consid-
erable debate (Gigerenzer, 1996; Mellers, Hertwig, & Kahneman,
2001; Samuels, Stich, & Bishop, 2012). One influential class of

models holds that rational probabilistic reasoning is too cognitively
burdensome for people, who instead use a variety of heuristics (Gig-
erenzer & Goldstein, 1996; Shah & Oppenheimer, 2008; Tversky &
Kahneman, 1974). Alternatively, rational process models hold that
errors arise from principled approximations of rational reasoning, for
example some form of hypothesis sampling (Dasgupta, Schulz, &
Gershman, 2017; Griffiths, Vul, & Sanborn, 2012; Sanborn & Chater,
2016). These different perspectives have some common ground;
certain heuristics might be considered accurate approximations
(Belousov, Neumann, Rothkopf, & Peters, 2016; Gigerenzer &
Brighton, 2009; Parpart, Jones, & Love, 2018).

One challenge facing both heuristic and rational process models
is that people appear to make different errors in different contexts.
For example, some studies report base rate neglect (Bar-Hillel,
1980; Birnbaum, 1983; Grether, 1980; Kahneman & Tversky,
1973), the finding that people underreact to prior probabilities
relative to Bayes’ rule. Other studies report conservatism (Peterson
& Miller, 1965; Phillips & Edwards, 1966), the finding that people
underreact to evidence.1

1 We will mostly avoid the term conservatism to denote underreaction to
data, because it is sometimes conflated with a bias to give conservative
probability judgments (i.e., judgments close to uniform probability). These
distinct phenomena make the same predictions only when the prior is
uniform over hypotheses. We return to the second use of the term later in
the article.
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Heuristic models respond to this challenge by allowing heuris-
tics to be context-sensitive, an example of strategy selection (Gig-
erenzer, 2008; Marewski & Link, 2014). Most models of strategy
selection assume that people are able to assess the usefulness of a
strategy, through cost-benefit analysis (Beach & Mitchell, 1978;
Johnson & Payne, 1985; Lieder & Griffiths, 2017), reinforcement
learning (Erev & Barron, 2005; Rieskamp & Otto, 2006), or based
on the strategy’s applicability in a particular domain (Marewski &
Schooler, 2011; Schulz, Speekenbrink, & Meder, 2016). All of
these approaches require, either explicitly or implicitly, a feedback
signal. This requirement poses a problem in inferential settings
where no feedback is available. People can readily answer ques-
tions like “How likely is it that a newly invented machine could
transform a rose into a blackbird?” (Griffiths, 2015), which lack an
objective answer even in principle.

Most rational process models are based on domain-general
algorithms, and thus struggle to explain the context-sensitivity of
inferential errors (see Mercier & Sperber, 2017, for a similar
argument). Some models explain why certain kinds of queries
induce certain kinds of errors (Dasgupta et al., 2017), but do not
explain how errors can be modulated by other queries in the same
context (Dasgupta, Schulz, Goodman, & Gershman, 2018; Gersh-
man & Goodman, 2014).

In this paper, we develop a new class of rational process
models that explain the context-sensitivity of inferential errors.
Specifically, we propose that people learn to infer. Instead of a
domain-general inference algorithm that treats all queries
equally, we postulate an approximate recognition model
(Dayan, Hinton, Neal, & Zemel, 1995; Kingma & Welling,
2013) that maps queries to posterior probabilities.2 The param-
eters of this recognition model are optimized based on the
distribution of queries, such that the output is on average as
close as possible to the true posterior. This leads to learned
biases in which sources of information to ignore, depending on
which of these sources reliably covary with the true posterior.3

Importantly, this optimization is carried out without explicit
feedback about the true posterior (Mnih & Gregor, 2014).

Like other rational process models, our approach is motivated
by the fact that any computationally realistic agent that per-
forms inference in complex probabilistic models—in the real
world, in real time—will need to make approximate inferences.
Exact Bayesian inference is almost always impossible. Learn-
ing to infer refers to a particular approximate inference scheme,
using a pattern recognition system (such as a neural network,
but it could also be an exemplar generalization model) to find
and exploit patterns in the conditional distribution of hypothe-
ses given data (the posterior). We will argue that a relatively
simple model of learned inference is both a good approximate
inference scheme, purely on algorithmic terms, and also can
account for a number of patterns of heuristic inference in the
behavioral literature, where people have been observed to de-
viate from ideal Bayesian updating in ways that are otherwise
hard to reconcile and even appear contradictory, because they
appear to deviate from Bayesian norms in different ways and in
different contexts. Our theory of learning to infer explains why
these contextual variations are observed, and why they should
be observed, in a system designed to adapt efficient approxi-
mate inference to the environments it finds itself in.

The rest of the paper is organized as follows. We first summa-
rize the empirical and theoretical literature on our motivating
puzzle (underreaction to prior vs. likelihood). We then introduce
our new theory. In addition to addressing underreaction, we show
that the theory can explain a number of related phenomena: mem-
ory effects, belief bias, and the structure of response variability in
probabilistic reasoning. In the Discussion, we connect our theory
to previous accounts of approximate inference in human probabi-
listic reasoning.

Underreaction to Probabilistic Information

Given data d, Bayes’ rule stipulates how a rational agent should
update its prior probabilistic beliefs P(h) about hypothesis h:

P(h | d) �
P(d | h)P(h)

�h� P(d | h�)P(h�)
(1)

where P(h | d) is the agent’s posterior distribution, expressing its
updated beliefs, and P(d | h) is the likelihood, expressing the
probability of the observed data under candidate hypothesis h.

The earliest studies of probabilistic belief updating, carried out
by Ward Edwards and his students (Edwards, 1968; Phillips &
Edwards, 1966), asked subjects to imagine a set of 100 bags filled
with blue and red poker chips. Red bags were filled predominantly
with red chips, and blue bags were filled predominantly with blue
chips; the proportion of colors in each bag type was known to the
subjects and manipulated experimentally. The subjects were told
that one of the bags was randomly selected and a set of chips was
randomly drawn from that bag. They then had to judge the prob-
ability that the observed chips came from each bag, by distributing
100 metal washers between two pegs. The proportion of washers
on each peg was taken to be the subjective report of the corre-
sponding probability. Closely related studies by Peterson and
colleagues used a continuous slider as the response apparatus
(Peterson & Miller, 1965; Peterson, Schneider, & Miller, 1965;
Peterson & Ulehla, 1964). It is important to emphasize that in these
studies, subjects were given all the relevant information about the
data-generating process necessary for computing the posterior.
Thus, there should be no learning about the parameters of this
process (i.e., the prior and likelihood).

Early on, it was evident that subjects were not exactly following
Bayes’ rule in these experiments, despite being given all the
information needed to compute it. In particular, subjects consis-
tently underreacted to the evidence, revising their beliefs less than
mandated by Bayes’ rule (a phenomenon commonly referred to as
conservatism, though we avoid this term for reasons explained in
the Introduction). This phenomenon was robust across many vari-
ations of the basic experimental paradigm; later we will discuss a
number of factors that influence the degree of underreaction.

2 When the recognition model is parametrized as a neural network, it is
sometimes also referred to as an inference network (Mnih & Gregor, 2014;
Paige & Wood, 2016; Rezende & Mohamed, 2015).

3 We focus on domains where we can control this covariance (of infor-
mation sources with the posterior) within an experiment, to study the
development of context-sensitive inferential errors. We also discuss how
similar mechanisms could explain errors in more real-world domains
where this context is learned from experience before the experiment, based
on ecological distributions of the relevant probabilities.
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Several hypotheses about the origin of underreaction were put
forth (for a comprehensive review, see Benjamin, 2018). One
hypothesis held that subjects compute Bayes’ rule correctly, but
had an inaccurate understanding of the underlying sampling dis-
tributions. Formally, subjects can be modeled as reporting the
following biased posterior �(h | d):

�(h | d) �
�(d | h)P(h)

�h� �(d | h�)P(h�)
(2)

where biases in the posterior are driven by biases in the subjective
sampling distribution �(d | h). To accommodate the existence of
underreaction, subjects would need to assume subjective sampling
distributions that were flatter (more dispersed) than the objective
distributions. Edwards (1968) proposed that the subjective sam-
pling distribution could be modeled as:

�(d | h) �
[P(d | h)]�

�d� [P(d� | h)]�
(3)

The parameter � controls the dispersion of the sampling distri-
bution. When � � 1, the subjective and objective sampling dis-
tributions coincide. Underreaction occurs when � � 1.

The biased sampling distribution hypothesis was supported by
the observation that subjective sampling distributions were indeed
flatter than the objective ones, and substituting these beliefs into
Bayes’ rule accorded well with reported posterior beliefs (Peter-
son, DuCharme, & Edwards, 1968; Wheeler & Beach, 1968). On
the other hand, a critical weakness of this hypothesis is that it
cannot explain the existence of underreaction with a sample size of
1, which would require that subjects disbelieve the experimenter
when they are explicitly told the sampling distribution (i.e., the
proportion of red chips in the bag). Moreover, even when subjec-
tive sampling distributions are entered into Bayes’ rule, underre-
action is still sometimes observed (e.g., Grinnell, Keeley, & Do-
herty, 1971).

These weaknesses of the biased sampling distribution hypothe-
sis motivated the alternative hypothesis that subjects are system-
atically underweighting the likelihood (Phillips & Edwards, 1966),
what Edwards (1968) referred to as conservatism bias. This hy-
pothesis can be formalized using a generalized version of Bayes’
rule:

P(h | d) �
[P(d | h)]�P(h)

�h� [P(d | h�)]�P(h�)
(4)

where � is a free parameter specifying the weighting of the
likelihood. Note that this model is superficially similar to
Edwards (1968)’s formalization of the biased sampling distri-
bution hypothesis, and in fact � � � when the denominator of
�(d | h) (�d� �P�d� � h���) is constant as a function of h (e.g., in
symmetric problems, where the proportion of red chips in red bags
is one minus the proportion of red chips in blue bags). However,
the psychological interpretation is different: the biased sampling
distribution hypothesis assumes that bias enters at the level of the
sampling distribution representation, whereas the conservatism
bias hypothesis assumes that bias enters when subjects combine
the prior and likelihood. Thus, conservatism bias offers no expla-
nation for why subjective sampling distributions should be biased.
It can, however, accommodate the fact that underreaction occurs

for sample sizes of 1, because it posits that even explicit knowl-
edge of the sampling distribution will not prevent biased updating.
Likewise, it accommodates the observation that underreaction is
still sometimes observed when subjective sampling distributions
are entered into Bayes’ rule.

A third hypothesis, first proposed by DuCharme (1970), is a
form of “extreme belief aversion” (see also Benjamin, 2018). If
subjects avoid reporting extreme beliefs, then large posterior odds
will be pulled toward 0. Consistent with this hypothesis, DuCh-
arme (1970) found that subjective odds coincided with the true
posterior odds only for posterior odds between �1 and 1; outside
this range, subjective odds were systematically less extreme than
posterior odds. A weakness of the extreme belief aversion hypoth-
esis, at least in its most basic form, is that it assumes a fixed
transformation of the true posterior, which means that it cannot
account for experiments in which underreaction changes across
conditions while the true posterior is held fixed (e.g., Benjamin,
Rabin, & Raymond, 2016; Griffin & Tversky, 1992; Kraemer &
Weber, 2004).

The literature on underreaction to evidence faded away without
a satisfactory resolution, in part because research was driven
toward the study of underreaction to priors by the work of Kah-
neman and Tversky (Kahneman & Tversky, 1973, 1972). Instead
of using laboratory-controlled scenarios involving bags filled with
poker chips, Kahneman and Tversky (1973) invoked more realistic
scenarios such as the following:

Jack is a 45-year-old man. He is married and has four children. He is
generally conservative, careful, and ambitious. He shows no interest
in political and social issues and spends most of his free time on his
many hobbies which include home carpentry, sailing, and mathemat-
ical puzzles.

One group of subjects was told that Jack is one of 100 individ-
uals, 30 of whom are lawyers, and 70 of whom are engineers.
Another group of subjects was told that 70 of the individuals were
lawyers and 30 were engineers. Kahneman and Tversky found that
subjects were largely insensitive to this manipulation: subjects in
the first group reported, on average, that the posterior probability
of Jack being an engineer was 0.5, and subjects in the second
group reported a posterior probability of 0.55. Thus, subjects
clearly underreacted to prior probabilities—that is, they exhibited
base rate neglect.4

Many subsequent studies have reported underreaction to priors,
though the interpretation of these studies has been the focus of
vigorous debate (see Barbey & Sloman, 2007; Koehler, 1996). It
has been observed in incentivized experiments (e.g., Ganguly,
Kagel, & Moser, 2000; Grether, 1980), in real-world markets
(Barberis, Shleifer, & Vishny, 1998), and in highly trained spe-
cialists such as clinicians (Eddy, 1982) and psychologists (Ken-
nedy, Willis, & Faust, 1997).

In addition to establishing the empirical evidence for underre-
action to priors, Kahneman and Tversky (1972) also proposed the
most influential account of its psychological origin. They argued

4 Although base rate neglect was popularized by Kahneman and Tver-
sky’s work, it was in fact documented earlier using the poker chip para-
digm (Phillips & Edwards, 1966), but this observation was mostly ignored
by subsequent research using that paradigm.
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that instead of following Bayes’ rule, people may use a represen-
tativeness heuristic, judging the probability of a hypothesis based
on the similarity between the observed data and representative data
under that hypothesis. For example, the vignette describing Jack is
intuitively more representative of engineers than it is of lawyers. If
people judge the probability of category membership based solely
on representativeness, then they will neglect the prior probability
of lawyers and engineers in the population, consistent with Kah-
neman and Tversky’s results.

To capture underreaction to priors formally, the model intro-
duced in Equation 4 can be generalized to allow insensitivity to the
prior (Grether, 1980):

P(h | d) �
[P(d | h)]�LP(h)�P

�h� [P(d | h�)]�LP(h�)�P
(5)

As before, �L � 1 implies insensitivity to the likelihood; in
addition, �P � 1 implies insensitivity to the prior (base rate
neglect). Grether (1980) referred to the case in which �L 	 �P 	
0 as the representativeness hypothesis.

In the special case where �L � 1 and �P � 0, the posterior is
simply the normalized likelihood. This corresponds to the model of
representativeness judgments proposed by Tenenbaum and Grif-
fiths (2001) in the case where there are two mutually exclusive
hypotheses. This model accounts for why two observations can
have the same likelihood but differ in their perceived representa-
tiveness. For example, a fair coin is equally likely to generate the
sequences HHHH and HTHT (where “H” denotes heads and “T”
denotes tails), but people intuitively perceive the latter sequence as
more representative of a fair coin. Similarly, people perceive
“being divorced four times” as more representative of Hollywood
actresses than “voting Democratic,” even though the latter has a
higher likelihood (Tversky & Kahneman, 1983).

The model put forward by Tenenbaum and Griffiths formalizes
the idea that representativeness is tied to diagnosticity: the extent
to which the data are highly probable under one hypothesis and
highly improbable under an alternative hypothesis. Gennaioli and
Shleifer (2010) offered a different formalization of representative-
ness that also captures the notion of diagnosticity. They model
probability judgments based on consideration of data that are
accessible in memory (see also Dougherty, Gettys, & Ogden,
1999). Judgmental biases arise when an agent engages in local
thinking (retrieving data from memory based on its diagnosticity).
This resonates with modern theories of episodic memory, which
posit that the retrievability of information is related to its distinc-
tiveness; under the assumption that information is stored and/or
retrieved probabilistically, distinctiveness is directly related to
diagnosticity (Mcclelland & Chappell, 1998; Shiffrin & Steyvers,
1997). Consistent with the diagnosticity hypothesis, Fischhoff and
Bar-Hillel (1984) showed greater underreaction to the evidence
when diagnosticity was higher (see also Bar-Hillel, 1980; Ofir,
1988). However, a meta-analysis by Benjamin (2018) showed that
most studies actually find the opposite pattern: underreaction to the
evidence is positively correlated with diagnosticity. One goal of
our theoretical account is to resolve this discrepancy.

Although much of the work on underreaction to the prior dis-
cussed above was largely driven by findings in more realistic
scenarios, such effects are also found in more laboratory-
controlled paradigms like those in Peterson and Miller (1964) and

Edwards (1968). In particular, when the parameters of the model in
Equation 5 are fit to behavioral data from studies using such
laboratory-controlled stimuli, the value of �P is generally between
0 and 1—indicating that subjects sometimes underweight the prior
in these cases as well, but do not neglect it completely (Benjamin,
2018). This formulation therefore allows for the case where both
�P and �L are less than 1, corresponding to a version of the system
neglect hypothesis proposed by Massey and Wu (2005): both the
likelihood and prior are neglected, producing an overall insensi-
tivity to variations in the data-generating process. An important
implication is that the two forms of underreaction are compatible
(one can underreact to both the likelihood and the prior) and could
potentially be explained by a unified model, with similar mecha-
nisms acting across these different domains. A goal of our theo-
retical account is to understand when underreaction occurs and
when such underreaction to one source is more prominent than
underreaction to the other.

In summary, the literature on probabilistic belief updating has
produced evidence for underreaction to both prior probabilities and
evidence. We now turn to the development of a theoretical account
that will explain several aspects and properties of these and other
errors.

Learning to Infer

To understand why people make inferential errors, we need to
start by understanding why inference is hard, and what kinds of
algorithms people could plausibly use to find approximate solu-
tions. We will therefore begin this section with a general discus-
sion of approximate inference algorithms, identify some limita-
tions of these algorithms (both computationally and cognitively),
and then introduce the learning to infer framework, which ad-
dresses these limitations. This framework provides the basic prin-
ciples needed to make sense of underreaction.

Approximate Inference

The experiments discussed above involved very simple (mostly
binary) hypothesis spaces where Bayes’ rule is trivial. But in the
more realistic domains that humans commonly confront, the hy-
pothesis space can be vast.

For example, consider a clinician diagnosing a patient. A patient
can simultaneously have any of N possible conditions. This means
that the hypothesis space contains 2N hypotheses. Or consider the
segmentation problem, faced constantly by the visual system, of
assigning each retinotopic location to the surface of an object. If
there are K objects and N locations, the hypothesis space contains
KN hypotheses. Such vast hypothesis spaces render exact compu-
tation of Bayes’ rule intractable, because the denominator (the
normalizing constant, sometimes called the partition function or
marginal likelihood) requires summation over all possible hypoth-
eses.

Virtually all approximate inference algorithms address this
problem by circumventing the calculation of the normalizing con-
stant (Gershman & Beck, 2017). For example, Monte Carlo algo-
rithms (Andrieu, De Freitas, Doucet, & Jordan, 2003) approximate
the posterior using M weighted samples {h1, . . . , hM}:
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P(h | d) � �
m�1

M

wmI[hm � h] (6)

where wm is the weight attached to sample m, and I[·] � 1 if its
argument is true (0 otherwise). Markov chain Monte Carlo algo-
rithms, generate these samples from a Markov chain whose sta-
tionary distribution is the posterior, and the weights are uniform,
wm � 1/M. The Markov chain is constructed in such a way that the
transition distribution does not depend on the normalizing con-
stant. Importance sampling algorithms generate samples simulta-
neously from a proposal distribution P̃(h), with weights given by
wm � P�d � hm�P�hm� ⁄ P̃�hm�.

Most cognitive theories of approximate inference have appealed
to some form of Monte Carlo sampling, for several reasons. First,
they can explain response variability in human judgments as
arising from randomness in the sampling process (Denison,
Bonawitz, Gopnik, & Griffiths, 2013; Gershman, Vul, & Tenen-
baum, 2012; Vul, Goodman, Griffiths, & Tenenbaum, 2014).
Second, they can explain a wide range of inferential errors, ranging
from subadditivity to the conjunction fallacy (Dasgupta et al.,
2017; Sanborn & Chater, 2016). Third, they can be implemented in
biologically plausible circuits with spiking neurons (Buesing, Bill,
Nessler, & Maass, 2011; Haefner, Berkes, & Fiser, 2016; Orbán,
Berkes, Fiser, & Lengyel, 2016).

Monte Carlo algorithms can be thought of as procedures for
generating an approximate posterior Q
(h | d) parametrized by the
set of weights and samples, 
 � {wm, hm}m�1

M . The superset � of
all feasible sets (i.e., the sets that can be produced by a particular
Monte Carlo algorithm) defines an approximation family. This
leads us to a more general view of approximate inference as an
optimization problem: find the approximation (parametrized by

 � �) that gets closest to the true posterior,

	� � argmin
	�


D[Q	(h | d) � P(h | d)] (7)

where dissimilarity between the two distributions is measured by a
divergence functional D. Most Monte Carlo algorithms do not
directly solve this optimization problem, but instead randomly
sample 
 such that, in the limit M ¡ �, they produce 
�. It is
however possible to design nonrandomized algorithms that di-
rectly optimize 
 (Saeedi, Kulkarni, Mansinghka, & Gershman,
2017) in a sample-based approximation. Such optimization is an
example of variational inference (Jordan, Ghahramani, Jaakkola,
& Saul, 1999), because the solution can be derived using the
calculus of variations. The most commonly used divergence func-
tional is the Kullback-Leibler (KL) divergence (also known as the
relative entropy):

DKL[Q	(h | d) � P(h | d)] � �
h

Q	(h | d) log
Q	(h | d)
P(h | d) (8)

The variational optimization view of approximate inference
allows us to consider more general approximation families that go
beyond weighted samples. In fact, the approximate posterior can
be any parametrized function that defines a valid probability
distribution over the relevant hypothesis space. For example, re-
searchers have used deep neural networks as flexible function
approximators (Dayan et al., 1995; Kingma & Welling, 2013;
Mnih & Gregor, 2014; Paige & Wood, 2016; Rezende & Mo-
hamed, 2015). From a neuroscience perspective, this approach to

approximate inference is appealing because it lets us contemplate
complex, biologically realistic approximation architectures (pro-
vided that the optimization procedures can also be realized bio-
logically; see Whittington & Bogacz, 2019). For example, partic-
ular implementations of variational inference have been used to
model hierarchical predictive coding in the brain (Friston, 2008;
Gershman, 2019).

Amortization

Most approximate inference algorithms are memoryless: each
time the system is queried (i.e., given data and asked to return
the probability of a hypothesis or subset of hypotheses), the
inference engine is run with a fresh start, oblivious to any
computations it carried out before. This has the advantage that
the algorithm will be unbiased, and hence with enough compu-
tation the parameters can be fine-tuned for the current query.
But memorylessness can also be colossally wasteful. Consider
a doctor who sees a series of patients. She could in principle
recompute her posterior from scratch for each set of observed
symptoms. However, this would fail to take advantage of com-
putational overlap across diagnostic queries, which would arise
if multiple patients share symptom profiles. To address this
problem, computer scientists have developed a variety of am-
ortized inference algorithms that reuse computations across
multiple queries (Dayan et al., 1995; Eslami, Tarlow, Kohli, &
Winn, 2014; Kingma & Welling, 2013; Marino, Yue, & Mandt,
2018; Mnih & Gregor, 2014; Paige & Wood, 2016; Rezende &
Mohamed, 2015; Rosenthal, 2011; Stuhlmüller, Taylor, &
Goodman, 2013; Wang, Wu, Moore, & Russell, 2018).

To formalize this idea, let the data variable d subsume not
only the standard observation (e.g., symptoms in the diagnostic
example) but also the information provided to the agent about
the generative model P(d, h) and the subset of the hypothesis
space being queried (e.g., a particular diagnostic test, which is
a subset of the joint diagnosis space). In the classical approx-
imate inference setting, the inference engine computes a differ-
ent approximate posterior for each query, with no memory
across queries. In the amortized setting, we allow sharing of
parameters across queries (see Figure 1). Optimizing these
parameters induces a form of memory, because changes to the
parameter values in response to one query will affect the
approximations for other queries. Put simply, the amortized
inference engine learns to infer: it generalizes from past expe-
rience to efficiently compute the approximate posterior condi-
tional on new data.

The optimization problem in the amortized setting is some-
what different from the classical setting. This is because we
now have to think about a distribution of queries, P(q). One way
to formalize this problem is to define it as an expectation under
the query distribution Pquery(d):

	� � argmin
	�


�Pquery
{D[Q	(h | d) � P(h | d)]} (9)

Under this objective function, high probability queries will
exert a stronger influence on the variational parameters (see
Figure 2 for an illustration). Note that Pquery(d) need not be
identical to the true marginal probability of the data under the
data-generating process, P(d). For example, a child might ask
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you a series of questions about the reproductive habits of
squirrels, but observations of these habits might be rare in your
experience.

It is important to note that classical (nonamortized) approx-
imate inference is a special case of amortized inference, and if
there are no constraints on the amortization architecture, then
the optimal architecture will not do any amortization. This
means that amortization only becomes relevant when there are
computational constraints that force sharing of variational pa-
rameters—that is, limitations on the function approximator’s
capacity. A key part of our argument is that the brain’s infer-
ence engine operates under such constraints (see Alon et al.,
2017; Feng, Schwemmer, Gershman, & Cohen, 2014), which
will produce the kinds of inferential errors we wish to explain.

The Learned Inference Model

We implement a specific version of this general framework,
which we refer to as the Learned Inference Model (LIM). This
model uses a three-layer feed-forward neural network as the
function approximator (see Figure 1C and 1D, further details
can be found in Appendix A). The inputs are all the relevant
information about the query subsumed by the data variable d,
and the outputs uniquely determine an approximate distribution
Q
(h | d) over all hypotheses h. For example, if we want to
model the posterior distribution P(h | d) as a Bernoulli distri-
bution over two hypotheses, then the inputs are the prior prob-
abilities of the two hypotheses, the likelihood parameters, and

observed data, whereas the output is a Bernoulli parameter that
represents the approximate posterior. The same parameters of
the network 
 are used to generate the approximate distribu-
tions Q
(h | d) for all queries d (i.e., the approximation is
amortized; Figure 1A and 1B). The network encounters a series
of queries d and outputs a guess for Q
(h | d). This guess is
improved in response to each new d, with updates to the
network parameters 
. This leads to query dependence (see
Figure 2) in the learned parameters 
, and therefore in the
approximation Q
(h | d). The updates to 
 are made using an
algorithm that performs that performs the optimization in Equa-
tion 9 using knowledge only of the joint distribution as a
learning signal (Ranganath, Gerrish, & Blei, 2014, see Appen-
dix A for details). Because the joint distribution is known, no
external feedback is necessary for learning.

These implementational details were chosen for simplicity
and tractability. Because many other choices would produce
similar results, we will not make a strong argument in favor of
this particular implementation. For our purposes, a neural net-
work is just a learnable function approximator, utilizing the
memory of previously sampled experience to approximate fu-
ture posteriors. Several other memory-based based process
models for probability judgment (e.g., Dasgupta et al., 2018;
Dougherty et al., 1999; Hertwig & Erev, 2009; Shi, Griffiths,
Feldman, & Sanborn, 2010; Stewart, Chater, & Brown, 2006)
could also learn to infer. Nonetheless, the implementation ful-
fills several intuitive desiderata for a psychological process

Figure 1. Schematics of different inference methods. (A) Memoryless inference recomputes the variational
parameters 
 from scratch for each new set of observations, resulting in an approximate posterior Q
 that is
unique for each d. (B) Amortized inference allows some variational parameters to be shared across queries,
optimizing them such that Q
 is a good approximation in expectation over the query distribution. (C) Schematic
of how we implemented this framework with a neural network function approximator in the Learned Inference
Model, with low capacity (1 hidden unit). (D) Schematic of a neural network function approximator in the
Learned Inference Model, with high capacity (5 hidden units). See the online article for the color version of this
figure.
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model. First, feed-forward neural networks have been widely
used to model behavioral and neural phenomena. Most relevant
to the present approach is the work of Orhan and Ma (2017),
who showed how generic neural networks could be trained to
implement probabilistic computation. Second, neural networks
offer a natural way to specify the computational bottleneck in
terms of a convergent pathway (the number of hidden units is
smaller than the number of input units).5 Such convergence has
played an important role in theorizing about other forms of
cognitive bottlenecks (e.g., Alon et al., 2017; Feng et al., 2014).
Third, the learning rule (blackbox variational inference) can be
applied incrementally, and does not require knowledge of the
posterior normalizing constant, making it cognitively plausible.
Fourth, as we discuss later, the model can be naturally inte-
grated with Monte Carlo sampling accounts of approximate
inference.

All model parameters (number of hidden units in the bottle-
neck, the architecture of the network, properties of the optimi-
zation algorithm, etc.) are fixed across almost all the experi-
ments (see Appendix A for details); any exceptions are noted
where relevant. All the key predictions our model makes are
qualitative in nature, and do not require fitting of free parameters
to empirical results.

Understanding Underreaction

We now apply the Learned Inference Model to our motivating
question: what is the origin of underreaction to prior probabilities
and evidence? We argue that these inferential errors arise from an
amortized posterior approximation. There are two key elements of
this explanation. First, the amortized approximation has limited
capacity: it can only accurately approximate a restricted set of
posteriors, due to the fact that the approximation architecture has
a computational bottleneck (in our case, a fixed number of units in
the hidden layer). We will see how this leads to overall underre-
action to both priors and evidence. Second, the particular posteri-
ors that can be accurately approximated are those that have high

probability under the query distribution. We will see how this leads
to differential underreaction to either prior or evidence. In this
section, we will focus on the first element (limited capacity),
because most of the experiments that we focus on use near-
uniform query distributions. We address the second element (de-
pendence on the query distribution) in subsequent sections.

Benjamin (2018) presented a meta-analysis of studies using the
classical balls-in-urns setup, or similar setups (e.g., poker chips in
bags). For simplicity, we will use the ball-in-urns setup to describe
all of these studies. Subjects are informed that there are two urns
(denoted R and B) filled with some mixture of blue and red balls.
On each trial, an urn h is selected based on its prior probability
P(h), and then a data set d � (Nr, Nb) of Nr red balls and Nb blue
balls is drawn from P(d | h) by sampling N � Nr  Nb balls with
replacement from urn h. The subject’s task is to judge the posterior
probability of urn R, P(h � R | d). Urn R contains mostly red balls
(red-dominant), and the urn B contains mostly blue balls (blue-
dominant). Following Benjamin (2018), we focus on symmetric
problems, where the proportion of the dominant color in both urns
is denoted by �, which is always greater than 0.5. We can also
interpret � as the diagnosticity of the likelihood: when � is large,
the urns are easier to tell apart based on a finite sample of balls.

In formalizing a model for subjective performance on this task,
Benjamin (2018) follows Grether (1980) in allowing separate
parameters for sensitivity to the likelihood and the prior (Equation

5 In this parallel, the network in our LIM is not intended to represent an
actual network of neurons in the brain per se, and the convergent bottlenecks
induced are not intended as a literal number of neurons in a natural neural
network. Real networks in the brain receive information in much higher
dimensional format, where the relevant variables are yet to be isolated. Further,
they have to cope with noise on these inputs, in the learning signal, and the
even the neurons themselves are stochastic. Our model is a highly idealized
version of the computations underlying probabilistic judgment, and specifics
like the number of units in the bottleneck or the number of layers, etc., cannot
be directly compared to biologically realistic analogs.
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Figure 2. Schematic demonstration of how the approximate posterior depends on the query distribution. (A)
The true posterior probability P (indicated by colors on the heatmap), as a function of the prior and likelihood
for a generative model in which h � Bernoulli(p0) and d | h � Bernoulli(pl). The contour lines depict the query
distribution. (B) The approximate posterior Q computed by the Learned Inference Model, averaged over the
query distribution. The approximation is better for areas that are sufficiently covered by the query distribution.
(C) The average KL divergence between the true and approximate posteriors. Higher divergence occurs in areas
that are covered less by the query distribution. See the online article for the color version of this figure.
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5). For analytical convenience, this model can be reformulated as
linear in log-odds:

log
P(h � R | d)
P(h � B | d) � �P log

P(h � R)
P(h � B) � �L log

P(d | h � R)
P(d | h � B) � �

(10)

where we have included a random response error term �. This
formulation allows us to obtain maximum likelihood estimates �̂P

and �̂L using least squares linear regression applied to subjective
probability judgments (transformed to the log-odds scale). Benja-
min (2018) first restricted the meta-analyses to studies with equal
prior probabilities across the hypotheses, such that �P is irrelevant.
The estimates of �L revealed three main findings: (a) Underreac-
tion to the likelihood is more prevalent (�̂L � 1); (b) the extent of
underreaction to the likelihood is greater (�̂L is lower) with larger
sample size (high N); and (c) the extent of underreaction is greater
with higher diagnosticity (higher �) of the likelihood.

We investigated whether the Learned Inference Model can cap-
ture these findings. For each experimental condition, collected
from 15 experiments, we trained the model with two hidden units
on the same stimuli presented to subjects. The conditions varied in
likelihood diagnosticity (�) and sample size (N). We additionally
include some uniformly random sample sizes and diagnosticities in
training as a proxy for subjects’ ability to simulate other possible
values for these query parameters, apart from the small set of specific
ones chosen by the experimenters.6 We found that the Learned Infer-
ence Model could successfully reproduce the three main findings
from the Benjamin (2018) meta-analysis (see Figure 3).

We also applied the model to experiments in which the prior
distribution was nonuniform (deviated substantially from 0.5).
Figure 4 shows data aggregated by Benjamin (2018) along with
model simulations, demonstrating that both people and the model
tend to be insufficiently sensitive to the prior odds (�̂P � 1),
consistent with base rate neglect.

We have shown that several of the main findings in the Benja-
min (2018) meta-analysis of inferential errors can be reproduced
by the Learned Inference Model with limited capacity. We now
build an intuition for how the model explains these phenomena.
The key idea is that limited capacity forces the model to sacrifice
some fidelity to the posterior, producing degeneracy: some inputs
map to the same outputs (see Massey & Wu, 2005, for a similar
argument). This degeneracy can be seen in Figure 3, where pos-
terior log-odds greater than 5 or less than �5 are mapped to
almost the same approximate log-odds value. Degeneracy causes
underreaction overall to sources of information (like sample size,
prior and likelihood). It also causes the approximate posteriors at
extreme log-odds to suffer relatively greater deviations from the
true posterior, in particular greater underreaction to sources of
information when the log-odds are extreme (e.g., with larger
sample sizes and more diagnostic likelihoods). Intuitively, degen-
eracy causes the model to have a relatively flat response as a
function of the posterior log-odds, which means that deviations
will also increase with the posterior log-odds.

To demonstrate that these biases in our model are indeed caused
by limited capacity in the network, we repeated the same simula-
tions with greater capacity (eight hidden units instead of two). In
this case, we found that the approximate posterior mapped almost
exactly to the true posterior (Figure 5A, left). Estimated sensitivity
to the likelihood (�̂L) across all diagnosticities and sample sizes

was very close to the Bayesian optimal of 1 (Figure 5A middle and
right). We also found that higher capacity mostly abolished base
rate neglect (Figure 4C).

What information is lost by a limited capacity approximation
depends on the query distribution. To examine this point more
closely, we simulated the Learned Inference Model (with 2 hidden
units) trained on a biased query distribution, where the likelihood
parameters, prior probabilities and sample sizes were the same as
used in training previously, but the queries were manipulated such
that 90% of the time the data were uninformative about which urn
is more likely—that is, the difference in the number of red and blue
balls was close to zero. The query distribution therefore is very
peaked around zero likelihood log-odds. We then tested the model
on the same queries simulated in Figure 3. As shown in the left
panel of Figure 5B (note the change in y-axis scale), the approx-
imation is still close to Bayes-optimal near zero posterior log-odds,
but the extent of degeneracy is overall far greater, with all the true
posterior log-odds being mapped to approximate posterior log-
odds roughly between �1 and 1. This results in much greater
underreaction overall. This is also reflected in Figure 5B, middle
and right, where the estimated sensitivity �̂L is closer to zero.

The Effect of Sample Size

In this section, we consider the effect of sample size on the
posterior distribution in greater detail, keeping the prior and like-
lihood parameters fixed. The most systematic investigation of
sample size was reported by Griffin and Tversky (1992), who
suggested a specific decomposition of the posterior log-odds into
the strength (sample proportion) and the weight (sample size) of
the evidence. These are two sources of information that inform the
posterior, and we can consider how strongly participants react to
these the same way we consider their reactions to the prior and
evidence in the previous section.

In one of their studies, they gave subjects the following instruc-
tions:

Imagine that you are spinning a coin, and recording how often the coin
lands heads and how often the coin lands tails. Unlike tossing, which
(on average) yields an equal number of heads and tails, spinning a
coin leads to a bias favoring one side or the other because of slight
imperfections on the rim of the coin (and an uneven distribution of
mass). Now imagine that you know that this bias is 3/5. It tends to
land on one side three of five times. But you do not know if this bias
is in favor of heads or in favor of tails.

After being shown different sets of coin spin results that varied
in the number of total spins and the number of observed heads (see
Table 1), subjects were then asked to judge the posterior proba-
bility that the coin was biased toward heads rather than toward
tails.

6 Crucially, however, the stimuli actually used in the experiment are
much better represented in the query distribution during training—leading
to differences in the predictions made by the Learned Inference Models
trained on different query distributions from each experiment. The uni-
formly random inputs primarily serve to add some noise to prevent the
Learned Inference Model from overfitting in cases where the experimental
stimuli only query a very small number of unique sample sizes and
diagnosticities.
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The two hypotheses in this task were that the biased coin either
favors heads (denoted h � A) or that it favors tails (denoted h �
B). The prior probabilities of both hypotheses were equal. The
symmetric binomial probability was fixed at � � 3/5, and the
observed data d � (Na, Nb) is the number of heads (Na) and
number of tails Nb. The posterior log-odds can then be written as:

log
P(h � A | d)
P(h � B | d) � N�Na  Nb

N � log� �
1  �� (11)

where N � (Na  Nb). Taking the log of this equation results in a
linear function relating the log of the posterior log-odds to evi-

dence strength log�NaNb

N � and weight log N. Following Grether
(1980); Griffin and Tversky (1992) allowed each component to be
weighted by a coefficient (�W for evidence weight, �S for evidence
strength), absorbed all constants into a fixed intercept term �0 �

log log� �

1��, and allowed for random response error ε, arriving at
the following regression model:

log�log
P(h � A | d)
P(h � B | d)� � �0 � �W log(N) � �S log�Na  Nb

N � � �

(12)

Figure 3. Simulation of inferential errors in binary symmetric problems with uniform priors. P(h | d) represents
true posterior probabilities, Q(h | d) represents subjective posterior probabilities. (A) Data aggregated by
Benjamin (2018). (B) Learned Inference Model simulations. Left: subjective posterior log-odds versus Bayesian
posterior log-odds. Middle: estimated sensitivity to the likelihood �̂L versus sample size N. Right: estimated
sensitivity to the likelihood versus diagnosticity �. The shaded curves show the linear and nonlinear (LOESS)
regression functions with 95% confidence bands. See the online article for the color version of this figure.T
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The Bayes-optimal parametrization is �W � �S � 1. How-
ever, Griffin and Tversky (1992) found that both �W and �S

significantly smaller than 1. Furthermore, subjects tended to be
less sensitive to the weight (�̂W � 0.31) compared with the
strength (�̂S � 0.81).

We now turn to predictions from the Learned Inference
Model. The actual stimuli presented to subjects in the original
experiment were only a small subset of the possible data from
the generative model implied by the instructions. Similarly to
the previous section, we partially pretrained the network with
random samples from the generative model as follows: we
sample the sample sizes from the set of stimuli used in the
original experiment (see Table 1), but did not fix the number of
observed heads, which we sampled randomly from the genera-
tive distribution instead. This can be thought of as offline
training on the generative process, which seems plausible based
on the instructions given to the subjects, and serves to regular-
ize the Learned Inference Model by preventing overfitting. We
then trained exclusively on the specific stimuli used in the
original experiment, and carried out our analyses on the mo-
del’s response to each query in Table 1.

Consistent with the experimental results, we found that the
model was suboptimally sensitive to both sources of informa-
tion (see Figure 6), with both �̂S and �̂W being less than 1. We
also found that it was more sensitive to the strength than the
weight (�̂S � 0.67, �̂W � 0.48).

Greater sensitivity to strength than to weight in our model
can be explained by considering the amount of variance ex-
plained by each of these variables. We took random samples

from the generative model and measured how much of the
variance in the log of the true posterior log odds can be
explained by the log of the strength and the log of the weights
separately. We found that the strength variable explains more of
the variance in the true posterior than the weight variable
(Figure 7A). A resource-limited approximation such as our
Learned Inference Model picks up on this difference during
pretraining and preferentially attends to the more informative
source (i.e., the one that explains more of the variance). More-
over, we carried out these regressions with the specific stimuli
used in the experiment and found that this difference was
exaggerated (Figure 7B), with the weight variable explaining
very little of the variance in the true posteriors. Training and
evaluation on a distribution where the weight explains so little
of the variance in the posterior leads the model to react to the
weight even less.

Manipulating the Query Distribution

In this section, we focus more directly on the role of the
query distribution. A basic prediction of our model is that it will
put more weight on either the prior or the likelihood, depending
on which of the two has been historically more informative
about the true posterior. We test this prediction empirically in a
new experiment by manipulating the informativeness of the
prior and the likelihood during a learning phase, in an effort to
elicit over- and underreaction to data in a subsequent test phase
that is fixed across experimental conditions. Specifically, in-
formativeness was manipulated through the diagnosticity of

Figure 4. Simulation of inferential errors in binary symmetric problems with nonuniform priors. P(h | d)
represents true posterior probabilities, Q(h | d) represents subjective posterior probabilities. Plots show prior
log-odds on the x-axis, and the subjective prior log-odds calculated as the subjective posterior log-odds
adjusted for subjective response to the likelihood (as modulated by �̂L). (A) Data aggregated by Benjamin
(2018). (B) Simulation with low-capacity (two hidden nodes) Learned Inference Model. (C) Simulation
with high-capacity (eight hidden nodes) Learned Inference Model. The shaded curves show the linear and
nonlinear (LOESS) regression functions with 95% confidence bands. See the online article for the color
version of this figure.
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different information sources. In the informative prior/uninfor-
mative likelihood condition, the prior probabilities were more
diagnostic across queries than the likelihoods, whereas in the
uninformative prior/informative likelihood condition, the like-
lihoods were relatively more diagnostic.

Subjects. We recruited 201 subjects (93 females, mean age �
34.17, SD � 8.39) on Amazon Mechanical Turk. Subjects were
required to have at least 100 past completed studies with a histor-
ical completion rate of 99%. The experiment took 12 min on
average and subjects were paid $ 2 for their participation. The
experiment was approved by the Harvard Institutional Review
Board.

Design and procedure. Subjects were told they would play
10 games with 10 trials each, in which they had to guess from

which of two urns a ball was sampled (i.e., which urn was more
probable a posteriori). On every round, they saw a wheel of
fortune and two urns (see Figure 8). They were then told that
the game was played by another person spinning the wheel of
fortune, selecting the resulting urn, and then randomly sampling
a ball from the selected urn. The wheel of fortune thus corre-
sponded to the prior and the balls in the urns to the likelihood
on each trial. Subjects were told that each trial was independent
of all other trials.

Subjects were randomly assigned to one of two between-
subjects conditions. One group of subjects went through eight
blocks of 10 trials each with informative priors and uninformative
likelihoods (Figure 8A); the other group went through 8 blocks of
informative likelihoods and uninformative priors (Figure 8B). We

Figure 5. Simulations of inferential errors with high capacity and a biased query distribution. P(h | d)
represents true posterior probabilities, Q(h | d) represents subjective posterior probabilities. (A) Simulation of
high-capacity (8 hidden units) Learned Inference Model. (B) Simulation of low-capacity (2 hidden units)
Learned Inference Model with biased query distribution. Left: subjective posterior log-odds versus Bayesian
posterior log-odds. Middle: estimated sensitivity to the likelihood �̂L versus sample size N. Right: estimated
sensitivity to the likelihood versus diagnosticity �. The shaded curves show the linear and nonlinear (LOESS)
regression functions with 95% confidence bands. See the online article for the color version of this figure.
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manipulated the prior distribution by changing the number of
options on the wheel labeled left or right. We manipulated the
likelihood by changing the proportions of two different colors in
both the left and the right urn. Both urns always contained 10 balls
of the same colors, and the proportion of colors was always exactly
mirrored. For example, if the left urn had eight red balls and two
blue balls, then the right urn had two red and eight blue balls. For
the informative prior/uninformative likelihood condition, the
wheel of fortune had urn probabilities (and diagnosticities �) of
0.7, 0.8, or 0.9, and the proportions of blue balls in the urns was 0.5
or 0.6. For the uninformative prior/informative likelihood condi-
tion, the wheel of fortune had urn probabilities of 0.5 or 0.6, and
the proportions of blue balls in the urns was 0.7, 0.8, or 0.9.

After the first eight blocks, both groups of subjects went through
the same test blocks. Each test block had either informative priors
or informative likelihoods, with their order determined at random.
We hypothesized that, if subjects learned to infer the posterior
based on their experience during the training blocks, subjects who
had experienced informative likelihoods would be more sensitive
to the likelihood than subjects who had experienced informative
priors, who would be relatively more sensitive to the prior.

Behavioral results. We fitted a regression to subjects’ re-
sponses (transformed to log-odds) during the test blocks following
Eq. 10. Thus, we entered the log-odds of the prior, the log-odds of
the likelihood, the condition (coded as 0 for the informative prior
condition, and 1 for the informative likelihood condition), as well
as an interaction effect between condition and likelihood and
between condition and prior.

As expected, subjects’ judgments were influenced by both the
prior (�P � 0.77, t � 27.529, p � .001) and the likelihood (�L �
0.92, t � 32.68, p � .001), indicating that they understand the key
components of the generative process and therefore recognize and
represent both of these as relevant to their final judgment. Cru-
cially, subjects who had previously experienced informative priors
reacted more strongly toward the prior than subjects who had
experienced informative likelihoods (interaction effect of Condi-
tion � �P � 0.10, t � 2.44, p � .01, Figure 9A). Vice-versa,
subjects who had previously experienced informative likelihoods
reacted more strongly toward the likelihoods than subjects who
had experienced informative priors (interaction effect of �L � �0.22,
t � �5.31, p � .001, Figure 9B). Furthermore, when estimating
individual regressions for both conditions, the reaction to the prior
was stronger than the reaction to the likelihood in the informative
prior condition (�̂P � 0.88 vs. �̂L � 0.70, p � .001), whereas the
reverse was true for the informative likelihood condition (�̂P �
0.78 vs. �̂L � 0.92, p � .001).

Modeling results. We trained the Learned Inference Model to
predict the posterior probability for each of the two urns, given the
prior probability for each urn and the ratio of colored balls in each
of the urns, and the color of the observed ball. We trained 40
different simulated subjects, 20 in each condition, each of which
observed exactly the data that a subject in their condition had seen,
and then tested them on the same test blocks that human subjects
went through. We applied the same regression to our Learned
Inference Model’s judgments that we applied to subject data. Our
Learned Inference Model’s judgments were significantly influ-
enced by both the prior (�P � 0.27, t � 41.41, p � .001) and the
likelihood (�L � 0.69, t � 104.98, p � .001). Importantly, the

Table 1
Stimuli Used in Griffin and Tversky (1992)

Number of heads (h) Sample size (n)

2 3
3 3
3 5
4 5
5 5
5 9
6 9
7 9
9 17

10 17
11 17
19 33

Figure 6. Strength and weight in probabilistic judgment. (A) Regression coefficients reported in Griffin and
Tversky (1992). (B) Regression coefficients estimated from simulations of the Learned Inference Model. Error
bars represent the standard error of the mean.
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simulated subjects in the informative prior condition reacted more
strongly toward the prior (interaction effect Condition � �P �
0.60, t � 64.83, p � .001, Figure 9C), whereas the simulated
subjects in the informative likelihood condition reacted more
strongly toward the likelihood (interaction effect of Condition �
�L � �0.41, t � �44.27, p � .001, Figure 9D). Estimating
individual regressions for both conditions as before, the reaction to
the prior was higher than the reaction to the likelihood in the
informative prior condition (�̂P � 0.80 vs. �̂L � 0.21, p � .001),
whereas the reverse was true for the informative likelihood con-
dition (�̂P � 0.29 vs. �̂L � 0.71, p � .001). Our Learned Inference
Model therefore reproduces the behavioral findings observed in
our experiment.

Manipulating the Query Distribution Between Versus
Within Subjects

The study reported in the previous section demonstrates that the
weight of an information source (prior or likelihood) is correlated
with its diagnosticity. An additional implication of the Learned
Inference Model is that people will only be sensitive to the prior
and likelihood if these parameters vary across queries during
training of the recognition model. If the parameters are relatively
constant (even if very diagnostic), then the recognition model will
learn to ignore them. More precisely, the recognition model learns
to amortize a fixed belief about the priors when they are held
constant, and therefore will be relatively insensitive to surprising

changes in the prior. This implication is relevant to a line of
argument articulated by Koehler (1996), that base rates are only
ignored when they are manipulated between rather than within
subjects.

Several lines of evidence support Koehler’s argument. Fis-
chhoff, Slovic, and Lichtenstein (1979) found greater sensitiv-
ity to base rates using a within-subjects design, and similar
results have been reported by Birnbaum and Mellers (1983) and
Schwarz et al. (1991), though see Dawes, Mirels, Gold, and
Donahue (1993) for evidence that base rate neglect occurs even
using within-subjects designs. Ajzen (1977) pointed out an
asymmetry in the experiments of Kahneman and Tversky
(1973), where individuating information was manipulated
within subject and base rates were manipulated between sub-
jects. He suggested that this may have focused subjects’ atten-
tion on individuating information at the expense of base rates.
Using a full between-subjects design, Ajzen (1977) found
greater sensitivity to base rates, consistent with a reduction in
the relative salience of individuating information compared to
the mixed within/between-subjects design.

For concreteness, we will consider this issue in the context of
the well-known taxi cab problem, where subjects were asked to
answer the following question:

Two cab companies, the Blue and the Green, operate in a given city.
Eighty-five percent of the cabs in the city are Blue; the remaining 15%
are Green. A cab was involved in a hit-and-run accident at night. A

Figure 7. Variance explained by strength and weight independently. These plots show regressions between the
log of the strength or weight of the evidence against the log of the posterior log-odds. (A) For samples drawn
from the true generative process, the strength explains more variance in the posterior. (B) For the stimuli used
in Griffin and Tversky (1992), the weight explains almost none of the variance in the log posterior log-odds,
whereas the strength explains a much higher amount of the variance. See the online article for the color version
of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

424 DASGUPTA, SCHULZ, TENENBAUM, AND GERSHMAN



witness identified the cab as a Green cab. The court tested the witness’
ability to distinguish a Blue cab from a Green cab at night by
presenting to him film sequences, half of which depicted Blue cabs,
and half depicting Green cabs. He was able to make correct identifi-
cation in eight of 10 tries. He made one error on each color of cab.
What do you think is the probability (expressed as a percentage) that
the cab involved in this accident was Green?

Note that the prior in this case is fairly diagnostic: it strongly
favors Blue cabs. However, several studies of the taxi-cab and
similar problems produced evidence for base rate neglect (Bar-
Hillel, 1980; Lyon & Slovic, 1976; Tversky & Kahneman, 1973).
These studies manipulated the base rates in a between-subjects
design. In the taxi cab problem, this corresponds to telling one
group of subjects that 85% of the cabs are blue and telling another
that 85% are green. Therefore, although the prior information is
diagnostic, as it appears to each subject, it never varies.

As mentioned above, Fischhoff et al. (1979) found greater base rate
sensitivity using a within-subjects manipulation of base rates in the
taxi cab problem. Each subject was given two different base rates for
the cab problem. We simulate the condition in which the base rates
were either 85% or 15%. The Learned Inference Model reproduces
the key finding of greater sensitivity to base rates using a within-
subjects design (see Figure 10). In fact, the model exhibits total
neglect of base rates in the between-subjects design, consistent with
previous findings reported by Lyon and Slovic (1976), though not all
experiments show such extreme results. The Learned Inference Model
naturally explains the difference between experimental designs as a
consequence of the fact that limited capacity and biased query distri-

butions cause the model to ignore sources of information that do not
reliably covary with the posterior.

In our model, we assume that the queries in the experiment are
the only queries ever seen by participants in this domain. In the
between-subjects design, this results in no covariance between
prior and posterior (since the prior never varies), and thereby gives
total base rate neglect. This is an extreme assumption we make for
illustrative purposes. In some experiments like the between-
subjects design in Tversky and Kahneman (1973) that consist of
only a single query per participant, it is not possible even in
principle to estimate the covariance of the prior and posterior
based solely on this one query. More realistically, experience of
these queries is integrated with previous experience.7 In the case of
a between-subjects design, this might concentrate the query dis-
tribution such that the overall covariance between the prior and the

7 This previous experience can take several forms and, via various other
mechanisms independent of experimental design, lead to biased inference
in the kinds of real-world questions studied in the base rate neglect
literature. Some possible mechanisms include having learned the covari-
ance of the prior and posterior in that domain from experience outside the
context of the experiment, using similar mechanisms to a Learned Infer-
ence Model, or entirely different mechanisms like the failure to map the
presented data generating process onto intuitive causal mechanisms for that
domain. We discuss some of these alternative models for base rate neglect
in greater detail in the section on Connections to Other Models for
Judgment Errors. The unique prediction of our model in this case is not of
replicating base rate neglect per se, but of replicating the influence of
experimental design on the extent of base rate neglect.

Figure 8. Screen shots of urn experiment. (A) In the condition with informative priors and uninformative
likelihoods, the wheel of fortune had urn probabilities of 0.7, 0.8, or 0.9. The proportions of blue balls in the urns
was 0.5 or 0.6. (B) In the condition with uninformative priors and informative likelihoods, the wheel of fortune
had urn probabilities of 0.5 or 0.6. The proportions of blue balls in the urns was 0.7, 0.8, or 0.9. See the online
article for the color version of this figure.
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posterior is reduced. In comparison, a within-subjects design gives a
higher covariance between prior and posterior in the query distribution.

The differences in historical query distributions for each subject
as determined by the experimental design also sheds light on
discrepancies in the effects of diagnosticity on the extent of un-
derreaction. Studies that find that reactions to a source of infor-
mation are stronger with increasing relative diagnosticity (Bar-
Hillel, 1980; Fischhoff & Bar-Hillel, 1984; Ofir, 1988) of that
source of information, used between-subjects designs. This is
analogous to our study in which subjects attend more to a source
that was more informative in the experienced query distribution,
leading to a stronger reaction to that source in future queries.
However, studies reported in Benjamin (2018) find greater under-
reaction with increasing diagnosticity (see Figure 3). We note that
these studies predominantly used within-subjects designs,8 in
which the same subject has to make inferences across all levels of
diagnosticity. This leads to a much broader query distribution,

where no source has reliably higher diagnosticity. Imposing a
limitation on the capacity of the approximation results in an
inability to faithfully express this broad query distribution, and
some neglect of the specific parameters (Massey & Wu, 2005).
This produces degeneracies in the response that manifest as greater
underreaction to more diagnostic sources of information. Our
model therefore is able to replicate these seemingly contradictory
findings, by taking into account the experienced query distribution
of each subject.

Extension to a Continuous Domain

In this section, we investigate the effect of informativeness in a
continuous domain, reanalyzing a data set reported by Gershman

8 Two exceptions to this pattern are Sasaki and Kawagoe (2007) and
Beach, Wise, and Barclay (1970).

Figure 9. Results of urn experiment. The y axis shows estimates for the regression coefficients �L and �P (see
Equation 10), and the x axis represents the experimental condition. (A) Subjects weighted the prior more in the
informative prior than in the informative likelihood condition. (B) Subjects weighted the likelihood more in the
informative likelihood than in the informative prior condition. (C) The Learned Inference Model weights the prior
more in the informative prior condition as compared to in the informative likelihood condition. (D) The Learned
Inference Model weights the likelihood more in the informative likelihood condition as compared in the informative
prior condition. Error bars represent the standard errors of the regression coefficients. See the online article for the
color version of this figure.
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(2017). Subjects (N � 117) were recruited through Amazon Me-
chanical Turk to take part in an experiment in which they had to
predict the pay-off of different slot machines. In total, they were
shown 10 different slot machines and had to make 10 guesses
per slot machine. Pay-offs varied between 0 and 100 and were
noisy such that no slot machine gave the same pay-off every time.
Subjects were assigned randomly to one of two groups in a
between-subjects design. Each machine k was associated with a
Gaussian distribution N(mk, s) over outputs ykn on each trial n. The
variance s was fixed to 25 and the mean was drawn from a normal
distribution N(m0, v), with m0 set to 40 and the global variance v
manipulated between groups. One group, in the low dispersion
condition, experienced a global variance of v � 36. The other
group, in the high dispersion condition, experienced a global
variance of v � 144.

Gershman (2017) used this paradigm to show how manipu-
lating the dispersion produced faster or slower acquisition of
abstract knowledge; we focus on a different aspect of the data
here: subjects updating behavior. Figure 11A shows subjects’
reaction to the incoming data, quantified as how much they
update their predictions after observing a slot machine’s output,
plotted against the predicted update of a rational hierarchical
model inferring the posterior mean payoffs for a machine.9

Subjects’ updates are positively correlated with the model’s
predicted updates for both the high dispersion, r(99) � 0.57,
p � .001, and the low dispersion condition, r(116) � 0.36, p �
.001. This is expected as the hierarchical model is assumed to
be a good first approximation of human behavior in this task.
However, subjects updated their beliefs much more in the high

dispersion than in the low dispersion condition— even for the
same rational update, t(214) � 9.24, p � .001—after account-
ing for differences in rational updates between the conditions.
This means that they were affected more strongly by the same
incoming evidence in the high dispersion than in the low
dispersion condition. As the higher dispersion group experi-
enced a higher global variance, this also means that they expe-
rienced a less informative prior. Thus, the fact that they under-
reacted to the prior when it is relatively less informative
reproduces the effect observed in our urn experiment in a
continuous domain.

To simulate these findings, we parametrized the outputs of the
Learned Inference Model to return the mean and log standard
deviation of a Gaussian posterior. The function approximator was
a neural network with a single two-unit hidden layer and a tanh
nonlinearity, taking as input the last observation, the mean of the
observations seen so far in that episode and the number of obser-
vations in that episode. We trained the model on the same gener-
ative process as was applied in the behavioral study. We then use
the model’s predicted mean as the response on every trial.

The results, shown in Figure 11B, demonstrate that the model
qualitatively matches the human data: a positive correlation be-
tween the hierarchical model’s predictions and our Learned Infer-
ence Model’s responses for both the low dispersion, r(19) � 0.82,
p � .001, and the high dispersion condition, r(19) � 0.82, p �
.001, but critically the update was stronger for the high dispersion
condition than for the low dispersion condition, t(38) � 7.40, p �
.001.

A discrepancy in the behavior of our model and the human data
can be seen for large updates, where the model predictions flatten
out significantly compared to human data. This is attributable to
the degeneracy caused by limited capacity (see also Figures 3 and
5). Different architectures and ways to parametrize the approxi-
mate distribution Q would lead to different kinds of degeneracies
and might better model this aspect of the human data. Nonetheless,
the effect we are primarily interested in in this study is that the
updates in the high dispersion condition are greater than in the low
dispersion condition (for both our model and the human data), for
every value of the true Bayesian update. This validates our claim
that reaction to data depends on the relative informativeness of the
prior and the likelihood in past queries. This claim applies to both
discrete and continuous domains.

Further Evidence for Amortization: Belief Bias and
Memory Effects

We now shift from our analysis of underreaction to a broader
evaluation of the Learned Inference Model, focusing on two pre-
dictions. First, the model predicts that the accuracy of human
probabilistic judgment will depend not only on the syntax of the
inference engine (how accurately the inference engine manipulates
probabilistic information) but also on the semantics (how well the

9 This rational hierarchical model is assumed to know the true parameter
values for s, v and m0. However, in this experiment, these parameters for
the full data-generating process were not explicitly shown to participants.
We therefore also carry out an analysis using a hierarchical Bayesian
model that additionally also infers these parameter values. This leads to
similar results; see Appendix B for details.

Figure 10. Base rate neglect within and between subjects. The y axis
shows the reaction to the prior as measured in predictions from the Learned
Inference Model, the x axis shows the different conditions. Reaction to the
prior here is measured by the difference between the responses given to test
queries in which the base rate was 85% and those in which the base rate
was 15%. Thus, a greater difference indicates a stronger reaction to prior
information. The model simulations of the within-subjects design show a
stronger reaction to the base rates than the simulations of the between-
subjects design (which shows no reaction to the base rate at all). Both of
these conditions produce underreaction to the base rate compared to the
Bayes-optimal judgment. See the online article for the color version of this
figure.
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probabilistic information corresponds to prior experience and
knowledge). The semantic dependence gives rise to a form of
belief bias, in which people are more accurate when asked to make
judgments about believable probabilistic information compared
with unbelievable information, even when the syntactic demands
(i.e., Bayes’ rule) are equated. Second, the model predicts that
there will be memory effects (sequential dependencies): one prob-
abilistic judgment may influence a subsequent judgment even
when the two queries are different.

Belief Bias

In studies of deductive reasoning, people appear to be influ-
enced by their prior beliefs in ways that sometimes conflict with
logical validity. Specifically, they tend to endorse arguments
whose conclusions are believable, and reject arguments whose
conclusions are unbelievable, regardless of the arguments’ logical
validity (e.g., Evans, Barston, & Pollard, 1983; Janis & Frick,
1943; Newstead, Pollard, Evans, & Allen, 1992; Oakhill, Johnson-
Laird, & Garnham, 1989). This belief bias phenomenon has played
a pivotal role in adjudicating between theories of logical reasoning.

Belief bias has also been observed in probabilistic reasoning
tasks (Cohen, Sidlowski, & Staub, 2017; Evans, Handley, Over, &
Perham, 2002). Here we focus on the study reported by Cohen et
al. (2017), which varied whether the posterior probabilities dic-
tated by Bayes’ rule were close to independently measured intui-
tive estimates of the corresponding real-world probabilities. Sub-
jects were asked to perform Bayesian reasoning in real-world
situations (e.g., medical diagnosis), with prior and likelihood in-
formation that was either consistent with (believable condition), or
inconsistent with (unbelievable condition) observed real-world
values. The authors found that subjects’ responses correlated well
with Bayesian posterior probabilities in the believable condition
(Figure 12A), and were much less correlated in the unbelievable
condition (Figure 12B).

An intuitive interpretation for these results is that people anchor
to the experienced real-world values of the prior, likelihood, and
resulting posterior, and adjust their computations inadequately to
the parameters actually presented in the query. The final responses
are therefore closer to the true posterior when this anchor is close
to the experimental parameters presented, as in the believable
condition. Anchoring has previously been modeled as the outcome
of a resource-limited sampling algorithms (Dasgupta et al., 2017;
Lieder, Griffiths, Huys, & Goodman, 2018a), but has usually been
studied in cases where the anchor is explicitly provided in the
experimental prompt. Learned inference strategies account for
memory of previous queries, and provide a model for what such an
anchor for a new query could be, in the form of an a priori guess
based on relevant past judgment experience. This interpretation of
learned inference as augmenting or anchoring other run-time ap-
proximate inference strategies is discussed in greater detail in the
section on Amortization as Regularization.

We model these effects by training the Learned Inference Model
on a set of priors and likelihoods that result in a particular posterior
distribution, PA, and testing on a set of priors and likelihoods that
result in posterior probabilities that either have the same distribu-
tion PA (believable condition) or a different distribution PB (un-
believable condition).10 The model produces responses that are
highly correlated with the true posterior probability in the believ-
able condition (Figure 12C, r � .78, p � .001), but this correlation

10 Each simulated subject received a training distribution where the
posterior probabilities were distributed according to the mixture distribu-
tion PA � 0.5 � Beta(3, 1)  0.5 � Beta(1, 1). Simulated subjects in the
believable condition were tested on posteriors sampled from the same
distribution, those in the unbelievable condition were tests on posteriors
sampled from the mixture distribution PB � 0.5 � Beta(1, 3)  0.5 �
Beta(1, 1). An equal number of simulated subjects received PB as the
training distribution (with PA as the test distribution in the unbelievable
condition).

Figure 11. Inferential errors in a continuous domain. (A) Reanalysis of data from the payoff prediction task
collected by Gershman (2017). (B) Simulations of the Learned Inference Model. Each panel shows subjective
updates from prior to posterior (�Data) on the y axis and the update of a rational (hierarchical) model (�Rational)
on the x axis. Error bars represent the standard error of the mean. Gray lines represent y � x. See the online
article for the color version of this figure.
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is much lower in the unbelievable condition (Figure 12D, r � .14,
p � .06, comparative test: z � 2.64, p � .004). Our model
therefore reproduces the belief bias effect reported by Cohen et al.
(2017).

Memory Effects

In our own previous work (Dasgupta et al., 2018), we observed
signatures of amortized inference in subjects’ probability esti-
mates. One such signature was that their answers to a question
(Q2) were predictably biased by their answers to a previous
question (Q1). This bias was stronger in cases were the two queries
were more similar.

The experiments were carried out in the domain of scene
statistics. We asked people to predict the probability of the
presence of a query object, given the presence of a cue object in
a scene. The query object was kept the same across both
queries. In one condition, the cue object in Q1 was similar to
the one in Q2, measured by the KL divergence between the two
posteriors over objects conditional on the cue object. In the
other condition, the cue object in Q2 was dissimilar from the
one in Q1.

For example:

Q1: “Given the presence of a chair in a photo, what is the probability
of there also being a painting, plant, printer, or any other object
starting with a P in that photo?”

Q2 (Similar): “Given the presence of a book in a photo, what is the
probability there is any object starting with a P in the photo?”

Q2 (Dissimilar): “Given the presence of a road in a photo, what is the
probability there is any object starting with a P in the photo?”

We biased the responses to Q1 for half the subjects using an
unpacking manipulation, which produces subadditivity of proba-
bility judgments. A subadditivity effect occurs when the perceived
probability of a hypothesis is higher when the hypothesis is un-
packed into a disjunction of multiple typical subhypotheses (Das-
gupta et al., 2017; Fox & Tversky, 1998; Tversky & Koehler,
1994). Using an example from our own work, when subjects were
told that there was a chair in the scene, they tended to assign higher
probability to the unpacked hypothesis “painting, plant, printer, or
any other object starting with a P,” than a control group who was
asked about the packed hypothesis “any object starting with a P.”
The true posterior is the same across these different conditions.

Figure 12. Belief bias. Top: experimental data. Bottom: simulations of the Learned Inference Model. (A)
Empirical results for the believable condition (Cohen et al., 2017). (B) Empirical results for the unbelievable
condition. (C) Simulated results for the believable condition. (D) Simulated results for the unbelievable
condition. The correlation between the actual and estimated posterior is closer to 1 (i.e., exact Bayesian
inference) in the believable condition than in the unbelievable condition. The Learned Inference Model
reproduces this effect.
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Critically, we found that the subadditivity group assigned higher
probability to the hypothesis queried in Q2 than the control group,
holding fixed Q2 across groups. This means that the bias induced
by Q1 was detectable in Q2, indicating that some computations
involved in answering Q1 were reused to answer Q2. Importantly,
we found that this bias was only detectable if the cue objects across
Q1 and Q2 were similar (Figure 13A). For example, first being
asked Q1 about the probability of the set of “objects starting with
a P” in the presence of a “book,” and afterward being asked Q2
about the probability of “objects starting with a P” in the presence
of a “chair” produced a memory effect whereas asking the same
Q2 did not show this memory effect when subjects in Q1 were
asked about the probability of the set of “objects starting with a P”
in the presence of a “road.” We argued that this was a sign of
intelligent reuse of computation, since a chair is more likely to
co-occur in scenes with a book than in scenes with a road.

In Dasgupta et al. (2018), we modeled reuse using amortizations
of samples in a Monte Carlo framework. However, a basic prob-
lem facing this framework is that the Monte Carlo sampler cannot
know about similarity (measured in terms of KL divergence)
without knowing the true posterior, which of course is the entity it
is trying to approximate. The Learned Inference Model provides an
answer to this conundrum, by adaptively amortizing (i.e., reusing)
past computations without access to the KL divergence or other
omniscient similarity measures.

In the interest of simplicity, we simulate these effects in a
smaller version of the original environment, rather than using the
full-scale scene statistics as in our original study (Dasgupta et al.,
2018). We simulated a data set of scene statistics with 12 objects
with two different topics that drive the multinomial probability
distributions over these 12 objects (Blei, Ng, & Jordan, 2003).
Using this setup, one can derive the joint probability of any two
objects. The joint probability is all that is required for blackbox
variational inference (Ranganath et al., 2014), so we are able to
train a larger version of the Learned Inference Model (with one
hidden layer, 10 hidden units, and a radial basis function nonlin-
earity), which takes as input each object d (a 12-dimensional
one-hot vector) and outputs the 12-dimensional multinomial prob-
ability distribution P(h | d) over all objects.

We then manipulated P(hi, d) for a specific cue object d and
query object hi by biasing it to be higher than its true value
(analogous to the subadditivity manipulation) and trained the
Learned Inference Model with the biased joint distribution for a
few steps. This caused the model to partially amortize Q1, which
in turn influenced its answer to Q2 (a memory-based subadditivity
effect), because the same network was used to answer both. Our
simulations demonstrate that the subadditive effect is significantly
larger for similar compared to dissimilar cue objects (Figure 13B;
t(58) � 4.62, p � .001). Our model therefore reproduces the
difference in the memory effect reported by Dasgupta et al. (2018).
Note, however, that the simulations are carried out in a different
generative model (i.e., a simplified version of the empirical envi-
ronment), and the sizes of the effects are not directly comparable.

Note that we did not attempt in this section to more directly
model subadditivity, as this would require the introduction of
additional mechanisms into our framework. Prior work by Das-
gupta et al. (2017) suggests how Monte Carlo sampling naturally
explains subadditivity. As we address further in the General Dis-

cussion, there are a number of ways that the Monte Carlo and
amortized variational inference frameworks could be integrated.

Amortization as Regularization

We introduced amortization as a method for optimizing a func-
tion that maps queries to posterior distributions. Another view of
amortization is as a method for regularizing an estimator of the
posterior distribution for a single query. The intuition behind this
is that one might have gained over experience some knowledge of
what the relevant task parameters and the resulting posteriors
generally are, and use that to regularize a noisy estimator for the
posterior for a new query at run-time. At first glance, it may seem
odd to think about the variational optimization procedure as pro-
ducing an estimator in the statistical sense, since the posterior is a
deterministic function of the query. To explain why this is in fact
not odd, we need to lay some groundwork.

An inference engine that is not bound by time, space or com-
putational constraints will reliably output the true posterior distri-
bution, whereas a constrained inference engine will output an
approximate posterior. There is no way for the constrained infer-
ence engine to know exactly how close its approximation is to the
true posterior. Another way of saying this is that the constrained
inference engine has epistemic uncertainty, even if the engine itself
is completely deterministic and hence lacks any aleatory uncer-
tainty (i.e., uncertainty arising from randomness).11 We can thus
regard the approximate posterior as an estimator of the true pos-
terior, and ask how we might improve it through the use of
inductive biases: if we have some prior knowledge about which
posteriors are more likely than others, we can use this knowledge
to bias the estimator and thereby offset the effects of computa-
tional imprecision.

To formalize this idea in the context of amortized inference, the
optimization problem in Equation 9 can be rewritten (up to an
irrelevant constant factor) as follows:

	� � argmin
	�
 �D[Q	(h | d) � P(h | d)]

� 1
Pquery(d)�Pquery

{D[Q	(h | d�) � P(h | d�)] | d� � d}� (13)

This expression separates a focal query d (the one you are trying
to answer now) from the distribution of other queries (d= � d). If
the focal query is high probability, the second term counts less, and
in the limit disappears, such that the optimization problem reduces
to fitting the variational parameters to the focal query. When the
focal query is low probability, the second term exerts a stronger
influence, and in the limit the optimization problem completely
ignores the focal query. We can think of the second term as a
regularizer: it pulls the variational parameters toward values that
work well (minimize divergence) under the query distribution, and
this pull is stronger when the focal query is low probability.

The regularization perspective allows us to connect our frame-
work to the correction prior theory developed by Zhu, Sanborn,
and Chater (2018). According to Zhu and colleagues, the brain
approximates the posterior by generating stochastic hypothesis

11 Epistemic uncertainty due to computational imprecision has been
studied systematically in the field of probabilistic numerics (Hennig,
Osborne, & Girolami, 2015).
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samples, and then corrects this approximation by regularizing it
toward a meta-Bayesian prior over posteriors (see also Rasmussen
& Ghahramani, 2003). The theoretical motivation for correction is
that the posterior approximation is a random variable owing to the
stochastic sampling process; when only a few samples are drawn
(cf. Vul et al., 2014; Dasgupta et al., 2017) this produces a noisy
estimate of the posterior that may deviate significantly from the
true posterior. The correction procedure reduces variance in the
posterior estimate by increasing bias, pulling it toward the meta-
Bayesian prior over posteriors (intuitively, toward an a priori guess
based on past experience), and therefore partially compensates for
the error in the sampling process.

More formally, the stochastic hypothesis sampling procedure
corresponds to a form of Monte Carlo approximation (see Eq. 6).
In the simple binary setting, H � {0, 1}, the Monte Carlo infer-
ence engine generates M samples from P(h | d).12 In our generic
formalism, the approximate posterior is parametrized by the pro-
portion of successes 
 � K/M, where K � �m I�hm � 1�. The
approximate posterior is then given by Q	�h � d� � 	h�1 
	�1h. This approximation will exhibit large stochastic deviations
from the true posterior for small M.13

To reduce the variance of the Monte Carlo estimator, Zhu et al.
(2018) proposed a meta-Bayesian inference procedure that com-
putes the posterior over the optimal parameters 
� given the data
supplied by the random variable 
:

P(	� | 	) � P(	 | 	�)P(	�) (14)

When the prior P(
�) is a Beta(A, B) distribution, the posterior
mean estimator is given by:

�{	� | 	} � w	 � (1  w) A
A � B (15)

where w � 1
M � A � B controls the balance between the Monte Carlo

estimate 
 and the prior mean A
A � B, which acts as a regularizer.

Intuitively, a larger sample size (M) or weaker prior (A  B) shift

the balance from the prior to the Monte Carlo estimate. When A �
B, as assumed in Zhu et al. (2018), the prior mean is 1/2. This gives
rise to a form of conservatism in which probabilities greater than
1/2 are underestimated, and probabilities less than 1/2 are overes-
timated (Erev, Wallsten, & Budescu, 1994; Hilbert, 2012). We
remind the reader that this form of conservatism is distinct from
the underreaction that we modeled in previous sections, which is
sometimes referred to as conservative probability updating (Ed-
wards, 1968).

Zhu et al. (2018) found evidence for such a conservative prior using
two different data sets. The first one was data collected by Costello,
Watts, and Fisher (2018), who asked subjects to estimate probabilities
for a range of weather events (e.g., cold, windy or sunny), or to
estimate probabilities of future events (e.g., “Germany is in the finals
of the next World Cup.”). The second one was data collected by
Stewart et al. (2006), who assessed the variability of probability
estimates for different phrases such as “improbably” or “quite likely.”
The sampling and correction prior model was able to quantitatively
capture the observed conservatism effect: people weighted their prob-
ability estimates toward 0.5 when providing their judgments (Figure
14A). It also led to a novel prediction that the variance of probability
estimates should be a quadratic function of the true probability, with
a peak at 1/2 (see footnote 13). This prediction was confirmed in the
experimental data (Figure 14B).

We now show that we can capture the same behavioral phe-
nomena (mean and variance effects) using the Learned Inference

12 We assume for simplicity that the inference engine can directly
sample from the posterior, though in most cases of practical interest the
inference engine will sample from a proxy distribution. For example, in
Markov chain Monte Carlo schemes, the inference engine samples from a
Markov chain whose stationary distribution is the posterior (Dasgupta et
al., 2017; Gershman et al., 2012).

13 The variance of the Monte Carlo estimator for a binomial distribution
with success probability p is p(1 � p)/M2.

Figure 13. Memory effect. (A) Observed subadditivity effect in query 2 reported in Dasgupta et al. (2018).
Cues that were similar to a previous query showed a higher effect than cues that were less similar, indicating
strategic reuse of past computation. (B) Simulated subadditivity effect. Provided that the model was trained to
exhibit a subadditivity effect in a first query, this effect remained stronger for similar queries than for dissimilar
queries. Error bars represent the standard error of the mean. See the online article for the color version of this
figure.
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Model. This analysis provides an important insight: the random
nature of the approximate posterior is not necessary (as in the
correction prior framework), and that regularization, which can act
even on deterministic approximations (provided these approxima-
tions are capacity limited as in the Learned Inference Model), can
explain the observed effects.

To simulate the experimental data, we created a query distribu-
tion that would give rise to posteriors distributed according to
Beta(0.27, 0.27), which Zhu and colleagues obtained by fitting
their correction prior to data on probability judgments collected by
Stewart et al. (2006). We then trained the Learned Inference Model
on queries sampled from this distribution. When tested on a range
of queries, the trained model replicated the conservatism effect in
Figure 14C. Regressing the expected probabilities onto the mod-

els’ responses revealed an estimated slope of 0.54, which was
significantly smaller than 1 (Wald test: t � 14.49, p � .001). This
arises from regularization toward the mean response of 0.5. Zhu et
al. (2018) explained the quadratic relationship between the expec-
tation and the variance as a feature of the sampling approximation.
However, our results demonstrate that the effect can arise even
when the approximation is deterministic, as long as it is capacity
limited. The key observation is that the Learned Inference model
contains degeneracies in the mapping from true to approximate
posterior and these degeneracies are more apparent further from
the mean. This increase in degeneracy results in lower variance at
extreme probabilities. This can also be interpreted as a bias-
variance trade-off (Geman, Bienenstock, & Doursat, 1992)—the
increased bias toward the mean response (conservatism) at ex-

Figure 14. Correction prior. (A) Simulation results from the correction prior model in Zhu et al. (2018)
exhibiting conservatism. Black line represents the optimal response and the colored lines show estimates from
different parameterizations of the model. (B) Quadratic relation between the variance of subjective probability
estimates and mean subjective probability estimates, as observed by Zhu et al. (2018). Points show data points
from previous empirical studies. The line shows best fit quadratic fit to this data. (C) The Learned Inference
Model replicates the conservatism effect. Points represent mean estimates from our model, the pink line
represents the best fit linear regression to these points, the black line represents the optimal response. (D) The
Learned Inference Model replicates the variance effect. Points represent variance of the subjective responses
from our model for different mean subjective responses. The pink line represents the best fit quadratic fit to these
points. See the online article for the color version of this figure.
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treme probabilities causes the variance of the estimator to de-
crease.

Regressing the models predictions onto the simulated variance,
we find that a quadratic model performs better than an intercept-
only model as also reported by Zhu et al. (2018), F(1, 19) � 78.73,
p � .001 (Figure 14D). Solving the resulting quadratic regression
for its maximum showed that this function peaked at 0.498 (i.e.,
close to 0.5 as predicted by the correction prior). We conclude that
our Learned Inference Model can reproduce the conservatism and
quadratic variance effects reported by Zhu et al. (2018), but
without a stochastic sampling algorithm. In the General Discus-
sion, we return to the relationship between learning to infer and
stochastic sampling.

General Discussion

Although many studies suggest that the human brain is remark-
ably adept at carrying out Bayesian inference (e.g., Griffiths &
Tenenbaum, 2006; Knill & Richards, 1996; Körding & Wolpert,
2006; Oaksford & Chater, 2007), many other studies present
evidence for systematic departures from Bayesian inference (e.g.,
Benjamin, 2018; Grether, 1980; Griffin & Tversky, 1992; Kahne-
man & Tversky, 1972, 1973). What does this mean for theories of
probabilistic reasoning? Should we abandon Bayesian inference as
a descriptive model? Are people using Bayesian inference in some
situations and heuristics in others? These questions motivated our
effort to formulate a new theory—learning to infer.

The starting point of our new theory is the assumption that the
brain must efficiently use its limited computational resources
(Gershman, Horvitz, & Tenenbaum, 2015; Lieder & Griffiths,
2019). This assumption means that Bayes-optimality is not the
appropriate normative standard for probabilistic reasoning. Rather,
we must consider how accuracy of probabilistic reasoning trades
off against the computational cost of accuracy. A learning system
that is trained to approximate probabilistic inference will, when a
limit on the computational cost is imposed (modeled here as a
computational bottleneck), exploit regularities in the distribution
of queries. These regularities allow the system to efficiently use its
limited resources, but it will also produce systematic errors when
answering queries that are low probability under the query distri-
bution. We showed that these are precisely the errors made by
people.

We implemented a specific version of this theory (the Learned
Inference Model) using a neural network function approximator,
where the computational bottleneck corresponds to the number of
nodes in the hidden layer. Our choice of neural network function
approximator was motivated by a natural complementarity be-
tween the strengths of probabilistic generative models and neural
networks. Neural networks are best thought of as pattern recogni-
tion and function approximation tools, rather than as ways to
represent causal knowledge about the world (Lake, Ullman, Te-
nenbaum, & Gershman, 2017). In contrast, probabilistic generative
models are good ways to represent knowledge about causal struc-
ture, and define what problem we are trying to solve in inferring
hidden causes from data, but they do not specify good effective
inference algorithms. By using neural networks to learn to infer in
a probabilistic generative model, a cognitive agent can combine
the strengths of these two approaches. Neural networks are used
not to recognize patterns in the external world, but patterns in the

agent’s own internal computations: what kinds of observed data
typically indicate that a particular inference is appropriate?

The model reproduced the results of several classical and recent
experiments in which people underreact to probabilistic informa-
tion. We first observed patterns in underreaction predicted by
limited capacity. We then found that the model can reproduce
sample size effects, in particular different reactions to the strength
and weight of evidence, by more strongly reacting to sources of
information that have historically been more diagnostic of the
posterior. This led to the new predictions that underreaction to
the evidence should occur when the queried posteriors covary
more strongly with the prior than with the likelihood (causing the
function approximator to attend to more to the prior), whereas
underreaction to the prior should occur when the queries covary
more with the likelihood than the prior. We tested this prediction
in a new experiment that varied the structure of the query distri-
bution, confirming that people make different inferential errors
depending on the query distribution, even when all probabilistic
information is provided to them. We also applied the analysis of
underreaction to several other experimental factors, such as sample
size, between- versus within-subjects designs, and continuous hy-
pothesis spaces.

The Learned Inference Model also provided insights into a
range of other inferential errors. For example, we showed how it
could explain belief bias in probabilistic reasoning, the finding that
people are closer to the Bayesian norm when given probabilities
that are consistent with their real-world knowledge (Cohen et al.,
2017). Belief bias arises, according to the model, because the
function approximator has to make predictions about the posterior
in a region of the query space that it was not trained on. Another
example is the finding of sequential effects in probabilistic rea-
soning: a single query can bias a subsequent query, if the two
posterior distributions are sufficiently similar (Dasgupta et al.,
2018). This arises, according to the model, because learning in
response to the first query alters the function approximator’s
parameters, thereby biasing the output for the second query.

Finally, we showed how the Learned Inference Model offers a
new realization for the correction prior proposed by Zhu et al.
(2018), according to which inferences are regularized toward fre-
quently occurring posterior probabilities. Taken together, these
results enrich our understanding of how people perform approxi-
mate inferences in computationally challenging tasks, which we
can be accomplished by learning a mapping between the observed
data and the posterior. Our proposed Learned Inference Model is
a powerful model of human inference that puts learning and
memory at the core of probabilistic reasoning.

Related Work

Egon Brunswik famously urged psychologists to focus on the
structure of natural environments, and the corresponding structure of
features that the mind relies on to perform inferences (Brunswik,
1955). Herbert Simon proposed the metaphor of the mind’s compu-
tations and the environment’s structure fitting together like the blades
of a pair of scissors, such that psychologists would have to look at
both blades to understand how the scissors cut (Simon, 1955). This
interdependence between people’s strategies and their environments
has been stressed by psychologists for decades (Todd & Gigerenzer,
2007), and our proposed Learned Inference Model fits well into that
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tradition. Essentially, what we have argued for here is that subjects do
not rely on a stable and fully rational engine for probabilistic infer-
ence, but rather that they learn to infer—that is, they optimize a
computationally bounded approximate inference engine, using mem-
ory to learn from previous relevant experience. Our proposal empha-
sizes the importance of studying an agent’s environment, in particular
the query distribution they are exposed to. For example, whereas
subjects who experienced informative priors in our urn experiment
ended up showing conservatism, subjects who experienced informa-
tive likelihoods showed base rate neglect. Our proposal also stresses
the importance of both memory (people reuse past computations) and
structure learning (people learn a mapping between observable and
the posterior) to explain subjects’ probabilistic reasoning more gen-
erally.

The idea that memory plays an important role in inference has
been studied by a number of authors. For example, Thomas,
Dougherty, Sprenger, and Harbison (2008) developed a theory of
hypothesis generation based on memory mechanisms (see Thomas,
Dougherty, & Buttaccio, 2014, for an overview of this research
program). Related ideas have also been explored in behavioral
economics to explain decision making anomalies (Bordalo, Gen-
naioli, & Shleifer, 2017). Our contribution has been to formalize
these ideas within a computational rationality framework (Gersh-
man et al., 2015), demonstrating how a resource-limited system
could adaptively acquire inferential expertise, which would in turn
produce predictable inferential errors.

Ours is not the first proposal to apply a neural network-based
approach to explain how people reason about probabilities. Gluck
and Bower (1988) used an adaptive network model of associative
learning to model how people learned to categorize hypothetical
patients with particular symptom patterns as having specific dis-
eases. Their results showed that when one disease was far more
likely than another, the network model predicted base rate neglect,
which they confirmed in subjects across three different experi-
ments. This is similar to our prediction that the Learned Inference
Model will start ignoring the prior if it has been historically less
informative, for example because one disease has never appeared
during learning. Using a similar paradigm, Shanks (1991) showed
that some versions of base rate neglect can be accounted for by a
simple connectionist model. Both of these studies, however, pro-
vided subjects with direct category feedback, whereas our Learned
Inference Model only requires access to the joint probabilities,
making it more algorithmically plausible. Bhatia (2017) showed
how vector space semantic models were able to predict a number
of biases in human judgments, including a form of base rate
neglect based on typical and nontypical descriptions of people and
judgments about their occupations.

That the prior and the likelihood can be differentially weighted
based on their importance has been proposed before. For example,
Koehler (1996) argued that neither the base rate nor the likelihood
are ever fully ignored, but may be integrated into the final judg-
ment differently, such that whether they are predictive of the
eventual outcome would influence the weight people place on
them. The idea that people ignore aspects of probability descrip-
tions if they are not informative is a pivotal part of ecological
definitions of rationality, for example as part of the priority heu-
ristic (Brandstätter, Gigerenzer, & Hertwig, 2006). In one exem-
plary demonstration of how ignoring unpredictive information can
be beneficial, Todd and Goodie (2002) simulated environments in

which base rates changed more frequently than cue accuracies, and
found that models ignoring either the base rate or the likelihood
could perform as well as their fully Bayesian counterparts.

Integrating With Sampling-Based Approaches

Our theory relies heavily on a variational framework for thinking
about the optimization problem that is being solved by the brain’s
approximate inference engine. This creates some dissonance with
prevailing ideas about approximate inference in cognitive science,
most of which have been grounded in a hypothesis sampling (Monte
Carlo) framework (see Sanborn & Chater, 2016, for a review), with
small numbers of samples. Hypothesis sampling has also been studied
independently in neuroscience as a biologically plausible mechanism
for approximate inference (e.g., Buesing et al., 2011; Haefner et al.,
2016). In our own prior theoretical work, we have employed hypoth-
esis sampling to explain a range of inferential errors (Dasgupta et al.,
2017, 2018). The question then arises of how (if at all) we can
reconcile these two perspectives—one of a variational approximation
learned over several past experiences, versus the other of a Monte
Carlo approximation consisting of a handful of samples in response to
the current query. We discussed in broader terms the potential role of
a learned inference model in augmenting predictions from a noisy
sampler as part of our section on Amortization as Regularization.
Here we sketch a few more concrete possibilities for how these
approaches might be combined to build new, testable models of
human probabilistic inference.

Almost all practical Monte Carlo methods rely on a proxy distri-
bution for generating samples. Markov chain Monte Carlo methods
construct a Markov chain whose stationary distribution is the true
posterior, often making use of a proposal distribution to generate
samples that are accepted or rejected. Importance sampling methods
simultaneously draw a set of samples from a proposal distribution and
reweight them. Particle filtering methods apply the same idea to the
case where data are observed sequentially. One natural way to com-
bine variational inference with these methods is to use the variational
approximation as a proposal distribution. This idea has been devel-
oped in the machine learning literature (e.g., De Freitas, Højen-
Sørensen, Jordan, & Russell, 2001; Gu, Ghahramani, & Turner,
2015), but has not been applied to human judgment.

For Markov chain Monte Carlo methods, another possibility would
be for the variational approximation to supply the initialization of the
chain. If enough samples are generated, the initialization should not
matter, but a number of cognitive phenomena are consistent with the
idea that only a small number of samples are generated, thereby
producing sensitivity to the initialization. For example, probability
judgments are influenced by different ways of unpacking the subhy-
potheses of a disjunctive query (Dasgupta et al., 2017) or providing
incidental information that serves as an anchor (Lieder et al.,
2018a,2018b). In these studies, the anchor is usually provided as an
explicit prompt in the experiment—learned inference strategies pro-
vide a model for what such an anchor for a new query could be in the
absence of an explicit prompt, in the form of an a priori guess based
on past judgment experience.

Several recent methods in the machine literature combine the
complementary advantages of sampling approximations and varia-
tional approximations leading to several new algorithms (Li, Turner,
& Liu, 2017; Naesseth, Linderman, Ranganath, & Blei, 2017; Ruiz &
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Titsia, 2019) that could also be studied as models for human judg-
ment.

The blackbox variational inference algorithm that we use (see
Appendix A) does in fact involve sampling: the gradient of the
evidence lower bound is approximated using a set of samples from
the variational approximation. Although we are not aware of direct
evidence for such an algorithm in brain or behavior, the idea that
hypothesis sampling is involved in the learning process is an
intriguing possibility that has begun to be studied more systemat-
ically (Bramley, Dayan, Griffiths, & Lagnado, 2017; Bramley,
Rothe, Tenenbaum, Xu, & Gureckis, 2018; Rule, Schulz, Pianta-
dosi, & Tenenbaum, 2018). It resonates with work in other do-
mains like reinforcement learning, where people seem to engage in
offline simulation to drive value updating (Gershman, Markman,
& Otto, 2014; Gershman, Zhou, & Kommers, 2017; Momennejad,
Otto, Daw, & Norman, 2018).

Connections to Other Models for Judgment Errors

In addition to the sampling-based approaches that we discuss in
the previous subsection, there may also be other sources of prob-
abilistic judgment errors in humans. Some of these include mis-
interpretation or misunderstanding of the question being posed by
the experimenter (Villejoubert & Mandel, 2002), inability to map
the provided probabilities onto an intuitive causal model (Krynski
& Tenenbaum, 2007), or simply disbelief in the experimenter’s
description of the data-generating process.14 We have restricted
most of our attention to studies in which subjects had to reason
about data-generating processes that are explicitly described (e.g.,
how many balls of each color were present in an urn). Consider-
able evidence suggests that people’s judgments and decisions
differ depending on whether they have received a problem as a
description or have experienced probabilities through experience
(Hertwig & Erev, 2009; Hertwig, Hogarth, & Lejarraga, 2018).
These are all likely part of the explanation for the judgment errors
discussed in this paper. Below, we suggest a few ways in which
predictions from our model could be integrated with, or distin-
guished from, predictions driven by these other mechanisms.

The Learned Inference Model in its current formulation assumes
that the correct data-generating process is provided in the query,
and only learns how to do inference within this data-generating
process. It does not account for uncertainty about or disbelief in the
data-generating process itself, and is insensitive to whether infor-
mation about it is acquired through description or learned from
previous experience. One could manipulate the amount of experi-
ence participants have with the data-generating process by letting
them observe samples from it within the experiment, rather than
only providing them with a description of the probabilities. This
would manipulate the certainty participants have in the data-
generating process, and pave the way toward assessing its influ-
ence on probability judgments in these domains—independent of
the effects predicted by a Learned Inference Model which assumes
perfect knowledge of the data-generating process.

Domain knowledge and preexperimental experience can also
contribute to uncertainty about the presented data-generating pro-
cess. Most of our results are from highly controlled domains (i.e.,
balls in urns), that people likely do not have strong intuitions for
based on past experience. Our findings in these domains are modeled
with inference strategies learned within the experiment. Considerable

evidence shows that people’s judgments and decisions are influenced
by whether the data-generating process presented matches preexperi-
mental intuitions about the causal structure of the real world (Ajzen,
1977; Krynski & Tenenbaum, 2007). The Learned Inference Model in
its current formulation has no notion of real-world causal structure,
and therefore no intuition about it. It can learn inference strategies
from within-experiment experience in any data-generating process
irrespective of whether it respects such intuitions. Expanding our
results to naturalistic settings, where people might have a priori causal
intuitions from previous experience, would allow us to manipulate
how intuitive the presented data-generating process is and tease apart
its role in judgment errors from the predictions of the Learned Infer-
ence Model.

Finally, we discussed in the previous section how learned in-
ference strategies might be integrated with memoryless sampling-
based approaches that approximate responses at each query inde-
pendently with a small number of samples. We discussed this as a
bias-variance trade-off in our section on Amortization as Regular-
ization. A prediction of this framework is that the extent of such
regularization will depend on the amount of experience accrued in
that domain, with more experience favoring a learned inference
strategy over memoryless stochastic sampling. Empirical results
suggest that experts and novices employ different decision strate-
gies, with experts appearing to rely more on memory-based heu-
ristics (Dhami & Ayton, 2001; Gigerenzer & Gaissmaier, 2011;
Reyna & Lloyd, 2006). Studying judgment errors across domains
where participants vary in preexperimental experience, or even
over the course of an experiment as within-experiment experience
increases, would allow us to better understand how learned and
memoryless inference strategies interact and trade-off.

More broadly, our theory of learning to infer allows us to frame
many of these errors in the context of resource-rationality (Gersh-
man et al., 2015; Lieder & Griffiths, 2019), and explains how
biases observed in the lab could be inevitable consequences of
algorithms that let resource-bounded minds solve hard problems in
real time. Many of the alternative mechanisms for judgment errors
suggested above have also been interpreted this way (Lieder,
Griffiths, & Hsu, 2018; Lieder et al., 2018a; Parpart et al., 2018).
Our model uniquely addresses how such biases could derive ra-
tionally from limited capacity inference strategies learned from the
history of past judgment experience. We leave many questions
open for further investigation, for example: how the mechanisms
of learning to infer interact with other approximate inference
strategies; which of these phenomena are best explained by our
approach as opposed to others, and under what circumstances; and
how previously proposed accounts in part might also be conse-
quences of learned inference strategies.

14 Although these models predict deviations from optimality, they do not
always specify a model for the responses actually produced, when partic-
ipants do not understand, internalize, or believe the data-generating process
presented by the experimenter. One possibility is that they fall back upon
a priori notions of the data-generating process. Our Learned Inference
Model provides a model for what these context-sensitive a priori beliefs
might be—in particular how these could be learned from past judgment
experience.
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Limitations and Future Directions

We modeled the mapping between queries and the posterior
using a multilayer neural network. This model does not assume
any explicit representational structure; the mapping is optimized
using blackbox variational inference, and many different mappings
can be learned depending on the capacity of the neural network.
Although this model provides a good first-order approximation of
what the brain might be doing, it remains to be seen whether the
functional form we chose is the best relative to other possibilities.
For example, our recent work on function learning suggests that
people have a strong inductive bias for compositional functions—
that is, functions that can be built up out of simpler building blocks
through algebraic operations (Schulz, Tenenbaum, Duvenaud,
Speekenbrink, & Gershman, 2017).

Another limitation of our work is that we focused on cases
where the posterior is defined over a single random variable, but in
the real world people frequently need to make inferences about
subsets of variables (or functions of those subsets) drawn from
very large sets of variables with complex joint distributions. This
complexity was the motivation for our previous work on hypoth-
esis sampling, which offers a computationally tractable solution to
this problem (Dasgupta et al., 2017). The memory-based subaddi-
tivity effects that we modeled (Dasgupta et al., 2018) are an
example of a phenomenon in which amortized inference and
hypothesis sampling might be unified, but we have not provided a
comprehensive unification (though the previous section describes
some potential avenues). For example, although our model can
capture the fact that more similar query items can lead to higher
subadditivity effects than less similar items, it currently does not
explain how subadditivity arises to start with.

In our model, the inputs are already boiled down to only the
relevant variables and therefore very low-dimensional, and the cost
function only evaluates how well the network predicts posterior
probabilities from these inputs. Inputs in the real world, however,
are likely more noisy and high dimensional. Several related but
different tasks are often multiplexed into the same network repre-
sentations in the brain (Alon et al., 2017; Feng et al., 2014).
Extending our theory to more noisy and uncertain real-world
learning is an important and interesting challenge.

We have assumed that the computational bottleneck is fixed,
defining a limited representational capacity for the function ap-
proximator that must be shared (possibly unequally) across que-
ries. However, in particular when considering computational ca-
pacity as a cost, another possibility is that the bottleneck is
flexible: representational capacity might increase (e.g., through the
allocation of additional units) when greater accuracy becomes
worth the cost of this greater investment, possibly by comman-
deering resources from other cognitive systems. This predicts that
more accurate probabilistic judgment should be associated with
poorer performance on other concurrent tasks that share cognitive
resources, and that properly incentivizing people should improve
their performance. Contrary to this hypothesis, evidence suggests
that incentives have little to no effect on some inferential errors,
such as base rate neglect (Ganguly et al., 2000; Grether, 1980;
Phillips & Edwards, 1966), and this point is corroborated by
evidence that inferential errors also appear in real markets with
highly incentivized traders (Barberis et al., 1998).

Conclusion

In his paper criticizing past research on base rate neglect,
Gigerenzer (1996) argued that “adding up studies in which base
rate neglect appears or disappears will lead us nowhere. Progress
can be made only when we can design precise models that predict
when base rates are used, when not, and why.” Here, we have
offered such a model. Concretely, our proposal is that people learn
to infer a posterior from observed information such as the priors,
likelihoods and data. Our Learned Inference Model explains a host
of effects on belief updating such as underreaction, belief bias, and
memory-dependent subadditivity. Our model renders inference
approximate and computationally tractable, making it a plausible
process model of human probabilistic inference.
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Appendix A

Implementation Details

Blackbox Variational Inference

In the main text, the variational optimization problem is
stated in terms of minimizing KL divergence. This is useful for
clarifying the nature of the problem, but less useful from an
algorithmic perspective because the objective function is not
tractable (it requires knowledge of the true posterior distribu-
tion, which is what we are trying to approximate). Nonetheless,
we can obtain a tractable objective function using the following
identity:

log P(d) � L[Q	(h | d)] � DKL[Q	(h | d) � P(h | d)], (16)

where

L[Q	(h | d)] � �Q	(h)�log P(h, d)  log Q	(h)� (17)

is the evidence lower bound (ELBO), also known as the negative free
energy. The term ELBO comes from the fact that L�Q	�h � d�� is a
lower bound on the evidence (log marginal likelihood) log P(d).
Maximizing the ELBO will produce the same variational approxima-
tion as minimizing the KL divergence. Critically, the ELBO elimi-
nates the dependence on P(h | d), only requiring access to the unnor-
malized posterior, the joint distribution P(h, d).

In certain special cases, the ELBO can be tractably computed
(see Jordan et al., 1999), but this is not true for arbitrary joint
distributions and approximations. Because the Learned Inference
Model uses a flexible neural network function approximator, we
adopt an approximate technique for evaluating and optimizing the
ELBO known as blackbox variational inference (Ranganath et al.,
2014). The key idea is to approximate the gradient of the ELBO
with a set of M samples:

�	L[Q	(h | d)] � 1
M �

m�1

M

�	 log Q	(hm | d)�log P(hm, d)  log Q	(hm)],

(18)

where hm � Q
(h | d). Using this approximation, the variational
parameters can be optimized with stochastic gradient descent
updates of the form:

	t�1 ¢	t � �t�	L[Q	(h | d)], (19)

where t indexes iterations and �t is an iteration-dependent step-
size. Provided �t satisfies the Robbins-Monro stochastic approxi-
mation conditions (�t�1

� �t � �, �t�1
� �t

2 � �), this optimization
procedure will converge to the optimal parameters with probability 1.

Function Approximation Architecture

We used a three-layer neural network architecture as the func-
tion approximator for the approximate posterior. Each unit took as
input a linear combination of all the units in the layer below, and
then passed this linear combination through a nonlinear transfer
function. The details of this architecture varied depending on the
structure of the inference problem.

When the hypothesis space was binary, the output of the
network was a Bernoulli parameter; thus, the network imple-
mented a function f	: D � �0, 1�, where D denotes the data
space, and the variational approximation was Q
(h | d) �
Bernoulli(h; f
(d)). The data space was modeled by five input
variables: one for the prior parameter, two for the likelihood
parameters, and two for the strength and weight of the evidence,
and the output space consisted of a single output that repre-
sented a Bernoulli parameter. The hidden units use a radial
basis function non-linearity, the mean and variance of which
were also optimized, and the activation function at the topmost
layer was a softmax in order to ensure the final output lay
between 0 and 1. To vary the capacity of the network, we vary
the number of hidden units; unless otherwise mentioned, net-
works contain 1 hidden unit since that provides the strongest
bottleneck and best demonstrates the effects of interest. We use
2 hidden units only in the replication of the empirical evidence

(Appendices continue)
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reviewed in Benjamin (2018). Some of the experiments therein
are more complex (larger and more varied space of priors,
likelihoods and sample sizes) than the subsequent experiments
we model, and we found that while a network with one hidden
unit still captured the qualitative patterns of interest in the
empirical results, it could not capture some of the variation and
therefore looked visually less similar to the empirical data. We
also use a variant of this function approximation architecture in
the section on memory-modulated subadditivity, where the
number of inputs increases to 12, and the output is a multino-
mial distribution of dimension 12. Learning a 12-dimensional
multinomial is much harder than learning a binomial, so we
increase the number of hidden units to 10.

When the hypothesis space was real-valued, the output was a
mean and log standard deviation parametrizing a Gaussian
distribution; thus, the network implemented a function f
: D �
�2, and the variational approximation was Q
(h | d) � N(h;
f
(d)). The data space was modeled by three inputs: the prior
mean, the mean of the evidence and the number of samples, the
output space consisted of two outputs that represented the mean
and variance of a normal distribution. The hidden units used a
hyperbolic tangent activation function, and the activation func-
tion at the topmost layer made no transformation at the node
representing the mean, and took an exponential at the node
representing the variance to ensure that the final output was
greater than zero.

Appendix B

Ruling Out Alternative Models in the Continuous Domain

Here we discuss the predictions of a hierarchical Bayesian
model that learns about the underlying global variances from
experience. We refer to it henceforth as the L-HBM, for learned
hierarchical Bayesian model. We find that it cannot reproduce the

observed effect of differentially strong reactions to data between
the high and the low dispersion condition.

The L-HBM assumes the true generative model described in the
section Extension to a Continuous Domain. The output ykn for trial
n in a block k is drawn from N(mk, S). These mk values are
distributed over blocks as N(m0, V).

The true values of these parameters are as follows: s � 25, m0 �
40, for all participants. In the high dispersion condition v � 144
and in the low dispersion condition v � 36. The HBM discussed
in the main text receives these correct values for the parameters.
The L-HBM discussed here has to infer these values. The prior
distributions we assume for m0, s, and v in the L-HBM are N(40,
10), half-Cauchy(0, 10), and half-Cauchy(0, 10), respectively. It
then receives the observations ykn and can form a joint posterior
distribution over m0, s, and v. With these it can then form a
posterior predictive distribution for mk in that block, which we use
as the predicted output on each trial.

We compared the resulting updates of this L-HBM to the
updates from the HBM in the main text that knows the true
parameters of the underlying generative distributions (see Fig-
ure B1). For both the high and the low dispersion conditions,
the updates closely follow the diagonal line of y � x. This
indicates that inferring m0, s, and v (in addition to mk) does not
result in significant differences in the updates in an ideal
observer. Crucially, the L-HBM does not replicate the main
qualitative effect of a significant difference in updates between
the high and the low dispersion condition, for the same rational
update. This means that—unlike our Learned Inference Model—a
hierarchical Bayesian model cannot reproduce the qualitative ef-
fects observed in the experiment.
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Figure B1. Performance of the L-HBM. Simulation results of a hierar-
chical Bayesian model that infers the underlying parameters in the exper-
iment reported by Gershman (2017). The y axis shows the L-HBM’s
updates from prior to posterior (�Data), and the x axis shows the update of
a rational (hierarchical) model (�Rational; a HBM that knows the true
parameters for the underlying generative process). Error bars represent the
standard error of the mean. Gray line represents y � x. See the online
article for the color version of this figure.
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