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Abstract

What place should formal or computational methods occupy in social psychology? We consider

this question in historical perspective, survey the current state of the field, introduce the several

new contributions to this special issue, and reflect on the future.
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1. Introduction

Social psychology was founded on two great ideas, one widely known and another

mostly forgotten. The first idea is what we ought to study: ourselves. Social psychologists

do not study isolated systems (memory, language, or vision), isolated behaviors (saccades

or lever-presses), or isolated physical mechanisms (neurons or networks). Rather, social

psychologists study complete individuals in context—“human persons” (Allport, 1961);

“persons as wholes” (Lewin, 1936)—and their interactions with each other. The basic

questions that animate social psychology—who we love, despise, or neglect; how we

make sense of others, and ourselves; why we strive for goodness, and why we often fall

short—cannot be expressed without reference to persons: I, you, we, and they. Rooted in

Gestalt theory, this holistic approach has branched into a wide canopy of inquiry covering

every aspect of human thought, feeling, and action.

The second idea is how we ought to study ourselves. Social psychology’s founders

aspired to organize the astonishing complexity of human thought around new formal con-

cepts and theories. In other words, their new field was intended not only to make the

topics of psychological inquiry broader, but also to make its theoretical underpinnings
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deeper. Kurt Lewin (1936) lamented the “mere piling up facts” practiced by his contem-

poraries, which “can only lead to a chaotic and unproductive situation.” He strained

against the temptations of our naive, prescientific psychological concepts—what today we

would call “folk psychology.” He perceived, instead, that scientific insight often depends

on new concepts and conceptual relations. He imagined that formal methods, such as

mathematics, could help us to discover and specify them.

This vision captivated a fledgling field. The Psychology of Interpersonal Relations
(1958), Heider’s masterpiece that inspired attribution theory, echoed Lewin’s call: “[W]e

shall not attain a conceptual framework by collecting more experimental results. Rather,

conceptual clarification is prerequisite for efficient experimentation. . . . Such systematiza-

tion is an important feature of any science and reveals relationships among highly diverse

events.” Likewise, Festinger’s A Theory of Cognitive Dissonance (1957) does not begin

with a lengthy discussion of some surprising new fact, but rather the quick observation of

a well-worn one: “It has frequently been implied, and sometimes even pointed out, that

the individual strives towards consistency within himself.” Festinger assumed his project

was not to document something new and surprising, but rather to explain an obvious

thing more deeply. Festinger promised to provide “. . . a more formal exposition of the

theory of dissonance. I will attempt to state the theory in as precise and unambiguous

terms as possible.”

Put simply, the founders of social psychology did not envision a new field that would

principally contribute new “effects” (experiments and their discoveries). Such phenomena

are usually apparent enough: We live them! Rather, they envisioned a new field whose

most valuable contributions would be novel concepts, theories, and formal structures.

These would be broad, general principles of mental and social organization of the kind

necessary to structure every branch of psychological science, including cognitive, devel-

opmental, and clinical research. They asked us, in short, to discover the hidden logic of

familiar things.

How are we doing? As a topic, social psychology is flourishing. The field itself has

never been more vibrant, or its inquiries more varied. It also runs a brisk export business:

Social psychology’s motivating questions are ascendant in every corner of psychological

science, from cognitive and comparative to developmental and clinical.

Strangely, however, the approach intended by the founders of social psychology is in

decline. Contemporary research emphasizes facts: experiments and their results. The ideal

experiment delivers a large effect due to a small, seemingly innocuous manipulation. The

ideal result is counterintuitive, perhaps from a scientific standpoint but certainly according

to lay theory. The ideal theory does not require new and unfamiliar concepts, but instead

offers a striking composition of familiar concepts; it should be instantly accessible to a

college undergraduate. These ideals are often implicit but sometimes explicit (e.g., Gray

& Wegner, 2013). In short, while social psychology was founded in order to discover the

hidden logic of familiar things, today it often strives for transparent descriptions of coun-

terintuitive things.

It is hard to say why. Perhaps, the cumulative effect of world events—the second

world war, the holocaust, and the civil rights movement—made practical applications
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more urgent than theoretical progress. Or perhaps, fault lies with the founders them-

selves, whose actual theoretical contributions fell well short of their ambitions. Lewin,

for instance, is rightly celebrated for observing that a person’s behavior is jointly

determined by aspects of the person and also of the environment. It is not clear, how-

ever, what was gained when he stated this formally as B = f(P, E). Here, it seems,

the idea itself gains nothing from formalization. Similarly, Heider’s baroque notational

scheme for folk psychology never caught on, and Festinger’s attempt to formalize

some concepts underlying cognitive dissonance went unused, even as the phenomenon

became indispensable. These early efforts seemed not to make important ideas accessi-

ble but, ironically, to obscure them. For one reason or another, a general feeling

emerged that, for social psychology, formal concepts and methods are at best unneces-

sary and at worst an impediment.

Of course, nobody denies that formal tools are indispensable to other fields of scien-

tific research. Newton’s, Boyle’s, and Mendel’s laws are fundamental not merely

because they summarize some body of facts, nor because they make quantitative predic-

tions, but rather because their formal structure allows us to simplify and organize our

understanding of complex processes. Formal theories give order to disorderly things,

from avalanches to thunderstorms to heritability. In order to use the theories, you must

master new concepts and operations. The return on this investment, however, is to per-

ceive the hidden logic of familiar things—even things that once seemed to defy any

form of logic. The concern, then, is not that there is something generally useless about

formal approaches in science.

Rather, the concern is that there is something specifically useless about formal

approaches in social psychology. When theories of social psychology used plain English

and ordinary folk concepts, they flourished; when theories constructed new concepts, used

formal tools, and aimed for broad, general, and abstract theories, they floundered. Per-

haps, social psychology is just different than other fields of study. Perhaps, avalanches,

thunderstorms, and inheritance have the kind of hidden logic that demands new formal

concepts and theories. Perhaps, individuals and their interactions—“whole persons”—are

best understood by rearranging familiar concepts in new ways to explain counterintuitive

things.

2. Three successful frameworks

During the decades when social psychology mostly turned away from formal

approaches, however, neighboring fields began to train their talents on Lewin’s goal:

establishing an abstract and formal language to organize the study of human individuals

and their interactions. Three areas of research deserve special attention: inference (how

we form beliefs), choice (how we assign values), and strategic interaction (how our

thoughts and actions influence each other). The contributions to this specific issue, among

many others, illustrate how formalisms from these three areas can support our understand-

ing of social cognition.
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2.1. Inference: Bayesian cognitive models

Suppose that you are in a cafe and overhear a young woman say, “I’m leaving you,”

to which her young male companion replies, “Who is he?”. From this faint sketch, you

can form a remarkably detailed image of their relationship: past, present, and future. How

is this accomplished?

One approach to this problem is some form of deductive reasoning (i.e., the application

of rules: “If a woman says, ‘I’m leaving you’, it’s a romantic breakup.”). Deductive rules

assume that the conclusion is logically entailed by the premises, but people make many

inferences that do not satisfy such a strong requirement. A woman saying “I’m leaving

you” does not, after all logically entail a romantic breakup; she might simply be leaving

the cafe. Nonetheless, the latter conclusion seems implausible, and inductive reasoning

offers a way of formalizing the degree of support for the conclusion. The most well-stu-

died form of inductive reasoning is the probability calculus, according to which the

degree of support for a conclusion corresponds to the conditional (posterior) probability

of the conclusion given the premises.

Viewed as a psychological theory (Griffiths, Kemp, & Tenenbaum, 2008), the proba-

bilistic framework makes three intertwined claims about human inductive reasoning:

1. We construct generative models of the world (see also Friston, 2010; Rao & Ballard,

1999). In other words, these models describe probabilistic (possibly causal) relations,

and we can use them to derive the hypothetical consequences of various states of

the world that are not directly observable. For instance, we might have the model:

“Infidelity causes breakups.” If you input a representation of infidelity, the model

“generates” predicted data: a breakup. Or, if you input the visual percept of a ball

flying toward a window, the model generates predicted data: a shattering crash.

2. These models are probabilistic. That is, we represent probability distributions over

the possible states of the world and the transitions between them. For instance, we

might represent that breakups are rare, infidelity is rare, but breakups commonly fol-

low from infidelity.

3. Inference involves inversion of the generative model, which is accomplished by

application of Bayes’ rule. Generically, suppose we are attempting to infer the prob-

ability of some hypothesis given data. This desired posterior P(hypothesis | data) is
calculated by multiplying the prior probability of the hypothesis P(hypothesis) and

the likelihood that the hypothesis would generate the data P(data | hypothesis), then
normalizing so the resulting probabilities sum to 1. In other words, you ask: “Which

state of the world is most likely to have generated the actual data I observed?”

When you observe a breakup, you ask: What are the most likely states of the world

that would have caused such a breakup to occur? Infidelity is a likely cause; an ill-

considered April fool’s joke is less likely. Bayes’ rule parses this belief into a

function of the prior probability (“How common is infidelity vs. April fool’s

jokes?”) and the likelihood (“How consistent is this conversation with infidelity vs.

an April fool’s joke?”).

284 F. Cushman, S. Gershman / Topics in Cognitive Science 11 (2019)



These elements enable a powerful set of cognitive operations. We are able to predict

future states of the world by applying our causal models, plan actions to maximize

reward and gain information, and learn causal models from experience.

Consider the application of Bayesian methods to a classic social–psychological finding
in the trait inference literature. Early studies of trait inference identified an apparent “neg-

ativity bias”: If you are told that a person did a bad thing (e.g., stealing candy from a

child), you infer that they are a very bad person, whereas if they did a good thing (giving

candy to a child), you do not make as strong an inference that they are a very good per-

son (Anderson, 1965; Birnbaum, 1972). Yet subsequent studies uncovered contexts in

which the reverse bias seemed to apply. For instance, if you are told a person did a smart

thing (e.g., programmed an iPhone app), you infer that she is a very smart person,

whereas if she did a dumb thing (e.g., threw out her own wallet), you do not make as

strong an inference that she is a dumb person (Martijn, Spears, Van der Pligt, & Jakobs,

1992).

The prevailing explanation for such findings centers on the idea of “diagnosticity”

(Reeder & Brewer, 1979; Skowronski & Carlston, 1989). Doing a bad thing is highly

diagnostic of being a bad person, whereas doing a good thing is only weakly diagnostic

of being a good person. Yet doing a smart thing is highly diagnostic of being a good per-

son, while doing a dumb thing is only weakly diagnostic of being a dumb person.

The Bayesian approach formalizes this intuition. To begin with, we assume that people

have generative models that specify how different behaviors (good, bad, smart, and

dumb) are caused by different types of people (Fig. 1a). These are specified probabilisti-

cally (Fig. 1b). For instance, smart people often do both smart and dumb things, but

dumb people rarely do smart things. Meanwhile, mean people often do nice and mean

things, but nice people rarely do mean things. Given these causal models, it follows from

the logic of Bayesian inversion that smart acts are more “diagnostic” than dumb ones,

and mean acts are more diagnostic than nice ones (Fig. 1c). This is because observing an

act only tells us what type of person somebody is if that act is very often performed by

one type of person, and very rarely by another.

Although the application of Bayes’ rule to this problem allows us to be “quantitatively

precise”—that is, to assign numerical probabilities to things—this is not its main selling

point. Nobody has a precise measure of the relevant inputs (what is the exact prior proba-

bility of a person being a “sinner” or a “saint”?), and nobody has a use for precise out-

puts anyway (what hangs on the question of whether p(sinner | steal) = .84 or .92?).

Rather, the strength of the Bayesian approach is that it lays bare the mechanics of rep-

resentation and reasoning. Representations are probabilistic and causal; reasoning involves

taking observed things (theft, or charity) and then systematically asking which unob-

served properties could best explain those (saintliness, or sin). It explains how we update

old beliefs in light of new information; how predication relates to explanation; how

sparse observations can sometimes license strong inferences.

Most of all, the Bayesian program fulfills Lewin’s vision of a general theory—one that

unifies a large body of facts accumulated across diverse subdisciplines: cognitive
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psychology, social psychology, developmental psychology, and clinical psychology. The

Bayesian approach is fundamental to current models of how we see (Knill & Richards,

1996), how we remember (Hemmer & Steyvers, 2009), how we communicate (Goodman

& Frank, 2016), how we infer others’ thoughts (Baker, Saxe, & Tenenbaum, 2009), how

we predict (Vul, Goodman, Griffiths, & Tenenbaum, 2014), and much more (Tenenbaum,

Kemp, Griffiths, & Goodman, 2011). As diverse as these kinds of thinking are, Bayesian

methods show how each of them shares some structure in common with the others.

Bayesian models have also been especially transformative in our understanding of

social learning (Acemoglu, Dahleh, Lobel, & Ozdaglar, 2011; Griffiths & Kalish, 2007;

Perreault, Moya, & Boyd, 2012; Shafto, Goodman, & Griffiths, 2014). In this issue, V�elez
and Gweon investigate the case of social learning from imperfect teachers. In their exper-

iments, the participants are playing a simple gambling game involving picking among

Fig. 1. An example of inference by Bayes’ rule. Given that a person steals, one can draw a relatively strong

inference that he is a thief, because only thieves steal with appreciable probability. Given that a person gives

to charity, one cannot conclude as strongly that he is not a thief, because even thieves occasionally give to

charity. (a) The claims about how thieves (and non-thieves, “saints”) behave are encoded in a generative

model. (b) These generative models can be specified probabilistically. (c) In this case, Bayes’ rule supports

an inference to the best explanation for the data, taking into account the prior probability of those explana-

tions as well as the likelihood of the data conditional upon them.
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several cards. Both the participant and a “teacher” have imperfect information about the

value of the cards, and the teacher gives the participant advice. Consistent with some

prior research (Biele, Rieskamp, & Gonzalez, 2009; Toelch, Bach, & Dolan, 2013), Velez

and Gweon find that they can model participant behavior using a simple heuristic assign-

ment of “accuracy” to the teacher’s recommendations (i.e., by summarizing the propor-

tion of the time that the teacher makes a “good” recommendation). Moving beyond this

prior research, however, they show that a superior fit to the data can be obtained by mod-

eling the participant’s joint inference over the value of the cards and the teacher’s beliefs

about the value of the cards. Contemporary Bayesian methods allow the authors to for-

malize this model in a clear way that integrates seamlessly with a larger body of research

on learning and mentalizing.

Several of these core themes are echoed in another contribution to this issue by Yang,

Vong Vu, and Shafto. They leverage formal tools to draw out an important and surpris-

ingly overlooked connection between teaching and active learning. In episodes of teach-

ing, a knowledgeable individual structures information and experiences for a naive

learner in order to give her new, true beliefs. In order to do this effectively, the teacher

may use theory of mind to reason about what the learner currently believes and how dif-

ferent kinds of information and experience are likely to influence those beliefs. Prior

work, much of it by the same authors, casts this problem as a form of recursive Bayesian

mental state inference (“I infer that if I do X, then you will infer Y”). In their contribu-

tion to this issue, Yang and colleagues show that the same framework can be adapted to

model “active learning”: the process by which a naive individual structures her own expe-

riences in order to attempt to gain new, true beliefs. Their use of formal methods allows

them to illustrate deep connections between teaching and active learning, and to identify

the ways in which this novel account of active learning differs from prior approaches.

Also in this issue, Ong and colleagues review a spate of recent work integrating emo-

tion into current Bayesian models of mentalizing. Early attempts to frame theory of mind

in Bayesian terms focused specifically on the theory of rational action (e.g., Baker et al.,

2009). According to this model, a person acts to efficiently achieve a set of desires condi-

tional on his beliefs about the environment. The basic function of Bayesian inference in

this domain, then, is to identify the “hidden” beliefs and desires that best explain the

observed actions that a person takes. Now, there is no doubt that many human decisions

are governed by this kind of reasoning; we review some of the relevant evidence in the

next section. But there is equally little doubt that humans sometimes make decisions in

other ways; for instance, by acting out of habit, instinct, or emotion. Similarly, humans’

mental states are obviously not exhausted by beliefs and desires, but also include various

emotional experiences and reactions. It would be remarkable, then, if people’s intuitive

theories of mind were blind to these kinds of thoughts; that unlikely possibility is under-

mined immediately by the presence of the words “habit,” “instinct,” and “emotion” in the

lay vocabulary. Ong and colleagues summarize and systematize a variety of proposals

that enrich the spare principle of rational action with a variety of representations and cau-

sal relations that capture the place of emotions in folk theory of mind. They then show
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how the tools of Bayesian inference could allow people to infer and reason about the

emotional states of others, even though these cannot be directly observed.

These contributions to the issue are notable because they integrate the methods of

Bayesian inference with the capacity for decision making by humans. And, indeed, there

is a large and productive literature on Bayesian decision theory. Nevertheless, a distinct

lineage of formal tools has been relatively more central in psychological theories of

value-guided decision making, and we consider these next.

2.2. Choice: Value-guided decision making

The most basic formal model of decision making is expected utility theory. Described by

Bernoulli in 1738, it states that a person should choose an action by considering the value of

the outcomes it might produce, weighted by the likelihood of each of those actions. Ber-

noulli understood this as a normative model of decision making: one that explains how we

ought to decide. Construed instead as a descriptive model of decision making, however, it

may be the first true formal model in the history of psychological theory.

It may also be the most maligned. In the second half of the 20th century, scholars in

social psychology, anthropology, cognitive psychology, and economics began treating

expected utility theory as a straw man on a shooting range, knocking off its axiomatic

commitments in experiment after experiment—initially with surprise, later with ease, and

finally with a touch of sadism.

During that very same period, however, the key elements of expected utility theory

were rearranged into several families of new formal tools that have revolutionized our

understanding of decision making, with far-reaching consequences across economics, psy-

chology, neuroscience, and computer science. In short, the basic formal tools of expected

utility, rational choice, and reinforcement learning may be descriptively inaccurate, but

they are also conceptually indispensable.

2.2.1. Utility
The first key legacy of expected utility theory is, simply, that humans represent something

like “utility”: A subjective assignment of value (or disvalue) to certain actions, states,

objects, etc., that guides choice. (In reinforcement learning, this is called “reward,” although

it could be positive or negative.) This did not have to be so. It is perfectly possible to pro-

duce organized, adaptive behavior without representing utility; your laptop computer does it

all the time. Similarly, many early theories in neuroscience were organized roughly as “re-

flexes” (reviewed in Glimcher, 2004): direct mappings from stimulus to action via a neural

Rube Goldberg machine. There is no doubt that some aspects of these theories are correct,

but we now know they are incomplete: Throughout the brain, neurons explicitly represent

utility, and many of our choices are guided by these representations.

2.2.2. Expected utility
It is useful for people to represent utility because it helps them make decisions. The

formal concept of expected utility offers one vision of how, precisely, utility and choice
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ought to be related. A person should begin by enumerating every possible action and

then, for each action, enumerate its possible outcomes, their utilities, and their probabili-

ties of occurring. Finally, they should choose the action with the highest expected utility

—that is, the sum, for all possible outcomes, of the product of their probability and their

utility.

People do not do this, exactly. People overweight unlikely events in decision making;

they encode value against certain “reference points”; they respond to losses and gains

asymmetrically. Theories that seek to explain these deviations, most famously Prospect

Theory (Tversky & Kahneman, 1992), are often best described as psychologically moti-

vated modifications of expected utility theory. In other words, the concept of expected

utility is not useful because it predicts choice with perfect precision, but rather because it

helps us to see a crucial dimension of the problem that actual choice algorithms are

designed to solve, and because it shows us the abstract simplicity of its optimal solution

(Marr, 1982).

Economists and psychologists have long known that the maximization of expected util-

ity helps to organize theories of human choice. One of the more remarkable discoveries

of the past 30 years, however, is how elegantly it organizes theories of neural representa-

tion (Rangel, Camerer, & Montague, 2008; Schultz, 2006). Across the brain, neural popu-

lations encode variables corresponding to the rewards associated with events, their

probabilities of occurrence and, ultimately, their expected utility. These representations

have been repeatedly demonstrated to structure choice behaviors ranging from where to

look (Platt & Glimcher, 1999) to what to buy (Knutson, 2007).

2.2.3. Reinforcement learning
The computation of expected utility asks us to evaluate actions according to their

likely outcomes and associated utilities. Sometimes, however, this is very hard to do.

Many human goals require extended and complex sequences of actions: earning a bache-

lor’s degree; visiting the Louvre; catching a salmon. If you are contemplating opening

moves for a game of chess, for instance, it is not especially illuminating to be advised:

“Just choose whichever move has the highest expected utility.” You knew that; the prob-

lem is to discover what the expected utility is and to coordinate across the many sequen-

tial actions you will have to take.

Reinforcement learning methods aim to solve the problem of learning or estimating

values in order to make adaptive sequences of decisions. Chess, for instance, can be for-

malized as a Markov decision process (MDP) in which each arrangement of the board is

a “state,” the movements of pieces are “actions,” and checkmate is the “reward.” The

goal of reinforcement learning is to assign expected values to things other than check-

mate, in order to simplify decision making. For instance, you might assign value to cer-

tain advantageous states of the board, or to certain advantageous actions.

A set of formal tools developed in the late 1950s (e.g., Bellman, 1957) helped

researchers to understand what, in principle, it means to make such value assignments,

and how they could be derived under ideal conditions. Later, in the 1980s, researchers

in the computer sciences began to develop efficient ways to approximate such values

F. Cushman, S. Gershman / Topics in Cognitive Science 11 (2019) 289



(Sutton & Barto, 2018). This line of research eventually led to machine learning algo-

rithms exceeding expert human play in games such as backgammon (Tesauro, 1995),

Atari video games (Mnih et al., 2015), and, most recently, go (Silver et al., 2016, 2017).

Indeed, it is integral to the current state-of-the-art solutions to many diverse machine

learning problems. The same formal tools are also central to our understanding of human

decision making. Several computational hallmarks of reinforcement learning have been

identified in the dopamine reward system of humans and non-human animals (e.g., Mon-

tague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 1997).

One especially useful idea formalized by reinforcement learning (RL) captures the

essence of “dual process” models of decision making (Dolan & Dayan, 2013). At least

since Thorndike (1927)—arguably, since Plato (Phaedrus, sections 246a–254e)—behav-

ioral scientists have understood that humans choose actions by a variety of means, each

suited to different circumstances. When acting quickly or thoughtlessly, we tend to sim-

ply repeat actions that have served us well in similar past circumstances. Habits are the

most extreme example of this basic form. In contrast, when acting slowly and deliber-

ately, we choose actions by considering their likely consequences. Goal-directed planning

is the most extreme example of this basic form.

Reinforcement learning models refine our understanding of the essential difference

between these processes. “Model-based” RL captures key aspects of goal-directed plan-

ning. All model-based methods share the feature that the agent maintains a subjective

representation of the relevant task—a “world model.” It evaluates actions by assessing

their likely outcomes and then chooses among them by maximizing expected value. In

contrast, “model-free” RL captures key aspects of habitual action. All model-free meth-

ods share the feature that the agent learns and stores summary representations of the val-

ues of actions, but without ever representing a world model. One simple way to do this is

to reinforce actions proportional to their history of reward. (This approach becomes espe-

cially powerful when “reward” refers not just to the immediate rewards but also to the

prospect of future reward encoded in the expected value of the next action, as in temporal

difference learning methods). Evidence suggests that humans make use of both model-

free and model-based methods of value estimation (Daw, Gershman, Seymour, Dayan, &

Dolan, 2011), often in competition but also sometimes in productive combination (Kool,

Cushman, & Gershman, 2018).

2.2.4. Applications to topics in social psychology
These foundational insights about the structure of value-based decision making are

now having a transformative effect in research on classic social–psychological topics

(Hackel & Amodio, 2018). These include prejudice and stereotyping (Kurdi, Satcher,

Gershman, and Banaji, in prep), morality (Crockett, 2013; Cushman, 2013), norms (Ruff

& Fehr, 2014), cognitive dissonance (Izuma et al. 2010; Sharot, De Martino, & Dolan,

2009), attraction and relationships (Walum & Young, 2018), social valuation (Krienen,

Tu, & Buckner, 2010), prosociality (Zaki & Mitchell, 2011), trust (Behrens, Hunt, Wool-

rich, & Rushworth, 2008), conformity (Izuma, Saito & Sadato 2010, Zaki, Schirmer, &

Mitchell, 2011), and more.
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Several contributions to the present issue compellingly demonstrate how computational

models of value-guided decision making can make unique contributions to our under-

standing of social interactions.

In this issue, Le Mens and colleagues consider the question of whether, all else being

equal, people should observe that popular things are better than unpopular things, or

instead that popular things are worse than unpopular things. By modeling this question,

they uncover a form of “self-fulfilling prophecy.” People who tend to believe that popular

things are good will explore many popular things, discovering that the best of these are

much better than they expected. In contrast, people who tend to avoid popular things will

fail to discover those very best-of-the-popular and persist in believing that they were

mediocre options. For this reason, even the absence of any “true” correlation between

popularity and quality, the propensity to choose popular things (or not) can create an illu-

sory correlation (or anticorrelation).

Also in this issue, Krafft pursues the application of a value-based decision-making

framework to a social setting (or what is often called a “multiagent” setting in the com-

puter science tradition). Specifically, he studies the conditions that give rise to “collective

intelligence”—the ability of a group of individuals to jointly optimize their individual

payoffs across diverse tasks. By formulating this problem as a variety of MDPs (one that

is multiagent and partially observable), he shows that a narrow set of conditions guaran-

tees optimal performance: perfect alignment of value and beliefs, and perfectly coordi-

nated action. In the real world, such conditions are presumably rarely met, however, and

so their main contribution is to define a notion of “general collective intelligence,” akin

to IQ but for groups. Generally, groups will have higher collective intelligence to the

extent that they are aligned in their beliefs and their preferences, and when they are also

coordinated in their actions.

2.3. Strategic interaction: Game theory

Not surprisingly, value-based theories of choice do a good job of explaining how peo-

ple value each other, and how they value different actions or outcomes in a social setting.

Reinforcement learning methods, in particular, have also been fruitfully applied to

develop good policies for strategic play in games such as backgammon, chess, and go.

They are not especially well suited, however, to the efficient description of such strategic

interactions—the outcome of a negotiation, the bargain over a price, the conduct of war,

or the commitments of a romantic relationship.

Game theory is a formal framework for understanding the interaction of multiple

agents motivated by rewards that depend on each other’s behavior—for instance, people

playing games. Although the foundations of game theory are historically deep, its most

pivotal period of development began in the late 1940s and 1950s, around the dawn of

social psychology’s golden era.

Game theory formalizes interactions between agents, each of whom has one or more

actions available to it. A set of rewards—typically called “payoffs” in game theory—are

at least partially dependent on the actions of the various players. The players are assumed
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to be motivated to pursue payoffs. The players may act simultaneously or sequentially;

once or many times; with perfect or imperfect information about their environment;

rationally or with variable degrees of irrationality. The framework has been productively

used to ask questions about how humans ought to make decisions (“What should a

rational actor do?”), to predict how humans do make decisions individually or through

bargaining (“What are people likely to do?”), and also to model evolutionary dynamics

(“What are organisms likely to evolve to do?”).

Consider, for instance, the game of “chicken.” In this game, adolescents drive cars

directly at each other in order to find out who (the “chicken”) will swerve first. If neither dri-

ver swerves, both suffer a major loss (death); if either swerves, they suffer a minor loss

(honor); if one stays the course while the other swerves, they win. This vividly illustrates the

property of games that one player’s payoffs can depend on another player’s choices.

There is, obviously, no single “right thing to do” in all games of chicken. Rather, the

right thing to do depends on what your partner will do. If you know that she will drive

on, then swerve; if you know she will serve, then drive on. And, as game theory shows,

for every game of chicken there is some pair of “stochastic” policies (i.e., “drive straight

with probability p, swerve with probability 1-p”), such that neither player can unilaterally

improve upon flipping a p-weighted coin. A related result in evolutionary biology shows

that games of chicken can induce a form of “balancing selection” in which a population

of players comprises proportion p of “straight” genes and proportion 1-p of “swerve”

genes, and any drift in gene frequencies away from these proportions is rebalanced by

natural selection.

As this example suggests, one of the key features of game theory is that it allows us to

reason about the kinds of “equilibria” that can be achieved among a set of strategies

adopted by different players. For example, the celebrated Nash equilibrium identifies sets

of strategies for which no individual player can improve their payoff by unilaterally

changing their strategy. While all players might be better off if they collectively and

simultaneously changed strategies, this requirement of collective action may pose a prac-

tical barrier to strategy change. In some contexts, then, we may expect to find individuals

persistently settled into one Nash equilibrium, even when every one of them would prefer

another. The formal tools of game theory are certainly not necessary to help predict these

kinds of situations (among many others), but they make it especially easy to identify and

reason about them.

For this reason, game theory has been used to analyze a staggering array of human

interactions. For instance, influential theories of human communication (e.g., the mean-

ings of words) depend on the analysis of “coordination” games in which two players are

striving to arrive at a mutually convenient set of policies (“what I mean by “BAGEL” is

the same as what you mean by “BAGEL”). An extension of these ideas explains, for

instance, why people bother with “indirect speech” (“officer, it’s a shame there isn’t some

other way we could settle this ticket. . .”; Pinker, Nowak, & Lee, 2008).

Another major branch of game theory analyzes “social dilemmas,” such as the Prison-

er’s Dilemma or Public Goods Game. These capture situations in which self-interest con-

flicts with the public interest. A major area of research aims to understand how
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cooperation is or could be achieved in such cases (Nowak, 2006). Potential solutions

include contingent reward or punishment (“reciprocity”), reputational consequences

(“indirect reciprocity”), intergroup competition (“group selection”), and family relation-

ships (“kinship”).

Game theory has also been used to model commitment, and the ways in which we

attempt to signal it. A classic example, arising from the possibility of strategic nuclear

war, is the doctrine of mutually assured destruction. In order to deter a nuclear first strike,

it can be rational for a nation to “precommit” itself to a retaliatory strike. The retaliatory

strike is apparently paradoxical; by the time a nation launches it, it is already assured of

annihilation. The commitment to a massive retaliatory strike is advantageous not in the

event that it occurs, but rather because of the precommitment—it is designed to credibly

and successfully deter any preemptive strike in the first place. This logic has been applied

to model the structure of the human revenge motive (Frank, 1988).

It is obvious, however, that “precommitments” of this form can only be effective if they

are clearly and credibly signaled. In other words, you will not deter your enemy from a pre-

emptive strike if they are unaware that you have precommitted to retaliation, or if they do

not believe you. This insight has led to a large and productive literature on honest signaling.

For instance, one recent analysis explores the ways in which people can signal commit-

ment by deliberately restricting their own access to information (Hoffman, Yoeli, & Nowak,

2015; Jordan, Hoffman, Nowak, & Rand, 2016). Suppose, for instance, that a friend asks

whether you could help him move apartments. If you ask, “How much stuff do you have?”,

this indicates to your friend that you lack a strong commitment to helping him; if you offer

assistance before knowing how much stuff he has, this signals a stronger commitment. Simi-

lar logic has been proposed to explain why romantic partners are strongly committed to each

other—in other words, disinterested even in non-partner mates that, from some immediate

standpoint of evolutionary fitness, are superior (Frank, 1988; Hoffman et al., 2015).

In this issue, Bear and Rand take that suggestion as their point of departure. Their

work illustrates an important consequence of formal argument in the cognitive sciences.

They verify that the logic of the original suggestion holds for a certain parameter space.

Specifically, if the costs of being left by your partner are very high (i.e., it would be very

hard for you to find a new partner at all, or to find one nearly as good), then the optimal

strategy is to avoid considering new partners (even at the cost of finding better ones), and

to leave your current partner if you sense that they are considering alternatives them-

selves. But the parameter space in which this result obtains is rather small. Beyond those

narrow conditions, it instead makes sense to continuously evaluate your partner options

and to tolerate similar behavior by your partner. This suggests that many cases of “blind

commitment” to romantic partners may require a different kind of explanation.

3. Conclusion

Social psychology matured together and yet strangely apart from the computational

methods we have described, which together comprise a foundation for computational
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social science. These fields grew up at the same time, in many of the same places,

engaged with a similar set of questions about the world. Yet, like twins adopted into dif-

ferent families, they grew up in isolation from each other. Did this isolation give social

psychology the room and freedom that it needed to grow, unfettered by formalities? Or,

was it instead deprived of a natural ally and companion?

We know how Lewin, Heider, and Festinger would have felt: as sorrowful as a parent

who learns that their children never met. But they are also old and gone; today, the field

is younger, and perhaps wiser. We conclude by considering some of these younger

voices: contributors to this issue who, in their own way, deliver a call to arms by and for

the current generation of social psychologists.

Yu, Siegel, and Crockett offer a compelling case study of how computational methods

can enrich social psychology. They review a program of research that integrates two

topics: how people make moral decisions, and how people perceive others’ moral deci-

sions. Obviously, these topics are related: People make moral decisions by weighing self-

interest against their concern for others; observers take note of this fact and attempt to

infer just how much a person’s motives are selfish versus selfless. In the absence of for-

mal tools, however, it has been challenging to move beyond such general statements.

How, precisely, are decisions made; how are they perceived and inferred; and, to what

extent is inference biased or noisy, and to what extent does it accurately capture “ground

truth”? Focusing on an experimental paradigm in which participants allocate electrical

shocks to others at a self-profit (or make judgments of others doing so), Yu and col-

leagues (a) discuss a utility-based formal model of decision making, (b) specify a Baye-

sian inference procedure that can recover key parameters of this model, allowing

observers to model the motivations of actors, and (c) describe a process by which such

inferred variables can generate moral judgments of the actors.

This case study draws out one of the key virtues of computational methods: They attain

simplicity through abstraction. A concept is abstract when it generalizes across the peculiar

features of many individual cases. It is a successful abstraction when the generalization

retains the core, essential features that make those cases importantly similar. Part of the par-

ticular value of formal tools is that they naturally afford useful abstractions of this kind. For

instance, the process of making a moral decision and the process of judging another person’s

moral decision are quite different. (Moreover, each one of these processes is instantiated in

very different ways in different contexts.) Yet the formal tools afforded by theories of value-

based decision making and Bayesian inference allow us to see certain abstract similarities—
a common set of core concepts and conceptual relations that influence how we act, how we

judge, and whom we trust. In order to understand the formal models, we must learn new con-

cepts (“value,” “generativity,” “Bayesian inversion”), often new symbols, and certainly new

ways of thinking. But the return on that investment is, in fact, to achieve a greater simplicity

of thought: We may clearly apprehend the form of a spare abstraction, uncluttered by the

extraneous details of any particular case.

Jolly and Chang’s contribution to this issue provides, however, a wholly different per-

spective on the value of formal methods in the social sciences. They identify value not in

reducing complex phenomena to simple theories, but rather in building theories
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sufficiently complex to mirror the intended phenomena. They borrow a metaphor from

Abbot’s (1884) novella Flatland, which describes people who interpret a three-dimen-

sional world through a two-dimensional conceptual framework. The central conceit of

Abbot’s fiction should, they argue, feel uncomfortably close to home to psychologists.

Many prominent theories are organized around dichotomies (for instance, “automatic” vs.

“controlled”) that surely obscure a much more complex set of facts. These facts, they

argue, require more “dimensions” than just two in order to be properly understood. The

difficulty with high-dimensional theories, however, is that the domain-general mental sys-

tems we generally use for scientific inference and communication are not capable of rep-

resenting or reasoning about them. In short, the world is too big, and our brains are too

small. Here, Jolly and Chang identify a crucial virtue of computational approaches: For-

mal tools such as mathematics allow us to both represent and reason about complex

theories symbolically, on a piece of paper or the screen of a computer. They augment

low-dimensional minds in a way adequate to the high-dimensional theories that science

often requires.

We seem, then, to have two diametrically opposed visions of the utility of formal theo-

ries in psychological research. According to one vision, formal methods are useful

because they facilitate abstractions of great simplicity; according to another vision, they

are useful because they facilitate a high-dimensional representation of great complexity.

In fact, however, these perspectives are remarkably aligned in their essence. First, they

agree that progress in psychological research will require new concepts that go beyond our

prescientific “folk psychology,” and new conceptual relations that go beyond mere descrip-

tions of facts. Formal methods give us a way of constructing new concepts and describing

new relations among them. This is equally true whether the relations are abstracted and sim-

ple, or high-dimensional and complex. Second, they agree that a goal of psychological

research should be to develop theories that draw disparate phenomena under common frame-

works. Formal methods provide a common, compositional language in which disparate data

can be aggregated into a larger theory, and disparate theories into a larger framework.

Indeed, this issue provides many excellent examples in which quite different formal methods

are integrated—for instance, combining theories of value-based decision making and Baye-

sian inference to develop a more comprehensive theory of morality.

Of course, these virtues align elegantly with the animating vision behind social psy-

chology: For social psychology to move beyond the “piling up of facts” by developing

new conceptual tools, and for these tools to systematize and unify theories across every

corner of psychological research—to explain, finally, “whole persons” and their interac-

tions. Formal tools provide a lingua franca in which we may state, finally, the hidden

logic of familiar things.
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