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Adaptive behavior often requires predicting future events. The theory
of reinforcement learning prescribes what kinds of predictive represen-
tations are useful and how to compute them. This review integrates
these theoretical ideas with work on cognition and neuroscience. We pay
special attention to the successor representation and its generalizations,
which have been widely applied as both engineering tools and mod-
els of brain function. This convergence suggests that particular kinds of
predictive representations may function as versatile building blocks of
intelligence.

1. Introduction

The ability to make predictions has been hailed as a general feature of both
biological and artificial intelligence, cutting across disparate perspectives
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2226 W. Carvalho et al.

on what constitutes intelligence (Ciria et al., 2021; Clark, 2013; Friston &
Kiebel, 2009; Ha & Schmidhuber, 2018; Hawkins & Blakeslee, 2004; Littman
& Sutton, 2001; Lotter et al., 2016). Despite this general agreement, attempts
to formulate the idea more precisely raise many questions: Predict what,
and over what timescale? How should predictions be represented? How
should they be used, evaluated, and improved? These normative “should”
questions have corresponding empirical questions about the nature of pre-
diction in biological intelligence. Our goal is to provide systematic answers
to these questions. We will develop a small set of principles that have broad
explanatory power.

Our perspective is based on an important distinction between predic-
tive models and predictive representations. A predictive model is a probabil-
ity distribution over the dynamics of a system’s state. A model can be “run
forward” to generate predictions about the system’s future trajectory. This
offers a significant degree of flexibility: an agent with a predictive model
can, given enough computation time, answer virtually any query about the
probabilities of future events. However, the “given enough computation
time” proviso places a critical constraint on what can be done with a predic-
tive model in practice. An agent that needs to act quickly under stringent
computational constraints may not have the luxury of posing arbitrarily
complex queries to its predictive model. Predictive representations, how-
ever, cache the answers to certain queries, making them accessible with lim-
ited computational cost.1 The price paid for this efficiency gain is a loss of
flexibility: only certain queries can be accurately answered.

Caching is a general solution to ubiquitous flexibility-efficiency trade-
offs facing intelligent systems (Dasgupta & Gershman, 2021). Key to the
success of this strategy is caching representations that make task-relevant
information directly accessible to computation. We will formalize the notion
of task-relevant information, as well as what kinds of computations access
and manipulate this information, in the framework of reinforcement learn-
ing (RL) theory (Sutton & Barto, 2018). In particular, we will show how one
family of predictive representation, the successor representation (SR) and its
generalizations, distills information that is useful for efficient computation
across a wide variety of RL tasks. These predictive representations facili-
tate exploration, transfer, temporal abstraction, unsupervised pretraining,
multi-agent coordination, creativity, and episodic control. On the basis of
such versatility, we argue that these predictive representations can serve as
fundamental building blocks of intelligence.

Converging support for this argument comes from cognitive science and
neuroscience. We review a body of data indicating that the brain uses pre-
dictive representations for a range of tasks, including decision making,

1
While we adhere to this definition consistently throughout this review, we recognize

that other uses of the phrase “predictive representation” appear in the literature.
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Predictive Representations 2227

navigation, and memory. We also discuss biologically plausible algorithms
for learning and computing with predictive representations. This conver-
gence of biological and artificial intelligence suggests that predictive repre-
sentations may be a widely used tool for intelligent systems.

Several previous surveys on predictive representations have scratched
the surface of these connections (Gershman, 2018; Momennejad, 2020). The
purpose of this survey is to approach the topic in much greater detail,
yielding a comprehensive reference on both technical and scientific aspects.
Despite this broad scope, the survey’s focus is restricted to predictive repre-
sentations in the domain of RL; we do not review predictive representations
that have been developed for language modeling, vision, and other prob-
lems. An important long-term goal will be to fully synthesize the diverse
notions of predictive representations across these domains.

2. Theory

In this section, we introduce the general problem setup and a classification
of solution techniques. We then formalize the SR and discuss how it fits into
the classification scheme. Finally, we describe two key extensions of the SR
that make it much more powerful: the successor model and successor fea-
tures. Due to space constraints, we omit some more exotic variants such as
the first-occupancy representation (Moskovitz et al., 2022) or the forward-
backward representation (Touati et al., 2022).

2.1 The Reinforcement Learning Problem. We consider an agent sit-
uated in a Markov decision process (MDP) defined by the tuple M =
(γ ,S,A, T, R), where γ ∈ [0, 1) is a discount factor, S is a set of states (the
state space), A is a set of actions (the action space), T(s′|s, a) is the probabil-
ity of transitioning from state s to state s′ after taking action a, and R(s) is the
expected reward in state s.2 Following Sutton and Barto (2018), we consider
settings where the MDP and an agent give rise to a trajectory of experience,

s0, a0, r1, s1, a1, . . . , (2.1)

where state st and action at lead to reward rt+1 and state st+1. The agent
chooses actions probabilistically according to a state-dependent policy
π (a|s).

We consider settings where the agent prioritizes immediate reward over
future reward, as formalized by the concept of discounted return. The value

2
For notational convenience, we will assume that the state and action spaces are both

discrete, but this assumption is not essential for many of the algorithms described here.
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of a policy is the expected3 discounted return:

Vπ (s) = E

[
H∑

t=0

γ tR(st+1)
∣∣∣∣s0 = s

]
. (2.2)

One can also define a state-action value (i.e., the expected discounted return
conditional on action a in state s) by

Qπ (s, a) = E

[
H∑

t=0

γ tR(st+1)
∣∣∣∣s0 = s, a0 = a

]
. (2.3)

The optimal policy π∗ is then defined by

π∗(·|s) = argmax
π (·|s)

Vπ (s) = argmax
π (·|s)

∑
a

π (a|s)Qπ (s, a). (2.4)

The optimal policy for an MDP is always deterministic (choose the value-
maximizing action):

π∗(a|s) = I

[
a = argmax

ã
Q∗(s, ã)

]
, (2.5)

where I[·] = 1 if its argument is true and 0 otherwise. This assumes that
the agent can compute the optimal values Q∗(s, a) = maxπ Qπ (s, a) exactly.
In most practical settings, values must be approximated. In these cases,
stochastic policies are useful (e.g., for exploration), as discussed later.

The Markov property for MDPs refers to the conditional independence
of the past and future given the current state and action. This property al-
lows us to write the value function in a recursive form known as the Bellman
equation (Bellman, 1957):

Vπ (s) =
∑

a

π (a|s)
∑

s′
T(s′|s, a)

[
R(s′) + γVπ (s′)

]
= E[R(s′) + γVπ (s′)]. (2.6)

Similarly, the state-action value function obeys a Bellman equation:

Qπ (s, a) = E[R(s′) + γ Qπ (s′, a′)]. (2.7)

These Bellman equations lie at the heart of many efficient RL algorithms, as
we discuss next.

3
To simplify notation, we will sometimes leave implicit the distributions over which

the expectation is being taken.
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Figure 1: Algorithmic solutions to the RL problem. An agent solving a three-
armed maze (bottom) can adopt different classes of strategies (top). Model-
based strategies (left) learn an internal model of the environment, including the
transition function (T), the reward function (R), and (optionally) the features
(φ). At decision time, the agent can run forward simulations to predict the out-
comes of different actions. Model-free strategies (middle) learn action values (Q)
and/or a policy (π ). At decision time, the agent can consult the cached action
values and/or policy in the current state. Strategies relying on predictive repre-
sentations (right) learn the successor representation (SR) matrix (M) mapping
states to future states and/or the successor features (ψ) mapping states to fu-
ture features, as well as the reward function (R). At decision time, the agent can
consult the cached predictions and cross-reference them with its task (specified
by the reward function) to choose an action.

2.2 Classical Solution Methods. We say that an algorithm solves an
MDP if it outputs an optimal policy (or an approximation thereof). Broadly
speaking, algorithms can be divided into two classes:

• Model-based algorithms use an internal model of the MDP to com-
pute the optimal policy (see Figure 1, left).

• Model-free algorithms compute the optimal policy by interacting
with the MDP (see Figure 1, middle).
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These definitions allow us to be precise about what we mean by predictive
model and predictive representation. A predictive model corresponds to T̂, the
internal model of the transition distribution, and R̂, an internal model of the
reward function. An agent equipped with T̂ can simulate state trajectories
and answer arbitrary queries about the future. Of principal relevance to
solving MDPs is policy evaluation, an answer to the query, “How much
reward do I expect to earn in the future under my current policy?” A simple
(but inefficient) way to do this, known as Monte Carlo policy evaluation, is by
running many simulations from each state (roll-outs) and then averaging
the discounted return. The basic problem with this approach stems from the
curse of dimensionality (Bellman, 1957): the trajectory space is very large,
requiring a number of roll-outs that is exponential in the trajectory length.

Abetter model-based approach exploits the Bellman equation. For exam-
ple, the value iteration algorithm starts with an initial estimate of the value
function, V̂π , then simultaneously improves this estimate and the policy by
applying the following update (known as a Bellman backup) to each state:

V̂π (s) ← max
a

∑
s′

T̂(s′|s, a)
[
R̂(s′) + γ V̂π (s′)

]
. (2.8)

This is a form of dynamic programming, guaranteed to converge to the op-
timal solution, V∗(s) = maxπ Vπ (s), when the agent’s internal model is ac-
curate (T̂ = T, R̂ = R). After convergence, the optimal policy for state s is
given by

π∗(a|s) = I[a = a∗(s)], (2.9)

a∗(s) = argmax
a

Q∗(s, a) ≈ argmax
a

Q̂∗(s, a). (2.10)

The approximation becomes an equality when the agent’s internal model is
accurate.

Value iteration is powerful, but still too cumbersome for large state
spaces, since each iteration requires O(|A||S|2) steps. The basic problem is
that algorithms like value iteration attempt to compute the optimal policy
for every state, but in an online setting, an agent only needs to worry about
what action to take in its current state. This problem is addressed by tree
search algorithms, which rely on roll-outs (as in Monte Carlo policy evalu-
ation) but only from the current state. When combined with heuristics for
determining which roll-outs to perform (e.g., learned value functions; see
below), this approach can be highly effective (Silver et al., 2016).

Despite their effectiveness for certain problems (e.g., games like Go and
chess), model-based algorithms have had only limited success in a wider
range of problems (e.g., video games) due to the difficulty of learning a
good model and planning in complex (possibly infinite/continuous) state
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spaces.4 For this reason, much of the work in modern RL has focused on
model-free algorithms.

A model-free agent by definition has no access to T̂ (and sometimes no
access to R̂), but nonetheless can still answer certain queries about the fu-
ture if it has cached a predictive representation. For example, an agent could
cache an estimate of the state-action value function, Q̂π (s, a) ≈ Qπ (s, a). This
predictive representation does not afford the same flexibility as a model of
the MDP, but it has the advantage of caching, in a computationally conve-
nient form, exactly the information about the future that an agent needs to
act optimally.

Importantly, Q̂π (s, a) can be learned purely from interacting with the
environment, without access to a model. For example, temporal differ-
ence (TD) learning methods use stochastic approximation of the Bellman
backup. Q-learning is the canonical algorithm of this kind:

Q̂π (s, a) ← Q̂π (s, a) + ηδ, (2.11)

δ = R(s′) + γ max
a′

Q̂π (s′, a′) − Q̂π (s, a), (2.12)

where η ∈ [0, 1] is a learning rate and s′ is sampled from T(s′|s, a). When the
estimate is exact, E[δ] = 0 and Q̂π = Qπ . Moreover, these updates converge
to Q∗(s, a) with probability 1 provided that the learning rates satisfy the
standard Robbins-Monro conditions for stochastic approximation (Watkins
& Dayan, 1992).

We have briefly discussed the dichotomy of model-based versus model-
free algorithms for learning an optimal policy. Model-based algorithms are
more flexible—capable of generating predictions about future trajectories—
while model-free algorithms are more computationally efficient—capable
of rapidly computing the approximate value of an action. The flexibility of
model-based algorithms is important for transfer: when the environment
changes locally (e.g., a route is blocked or the value of a state is altered),
an agent’s model will typically also change locally, allowing it to transfer
much of its previously learned knowledge without extensive new learning.
In contrast, a cached value function approximation (due to its long-term de-
pendencies) will change nonlocally, necessitating more extensive learning
to update all the affected cached values.

One of the questions we aim to address is how to get some aspects of
model-based flexibility without learning and computing with a predictive
model. This leads us to another class of predictive representations: the SR.
In this section, we describe the SR (see section 2.3), its probabilistic variant

4
Recent work on applying model-based approaches to video games has seen some suc-

cess (Tsividis et al., 2021), but progress toward scalable and generally applicable versions
of such algorithms is still in its infancy.
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Figure 2: Three kinds of predictive representations: the successor representa-
tion (see section 2.3), the successor model (see section 2.4), and successor fea-
tures (see section 2.5). Their computations are summarized in Table 1. Each of
these predictive predictive representations describes a state by a prediction of
what will happen when a policy π is followed. With the successor representa-
tion, one gets a description of how much all states will be visited in the near
future when beginning at state s. One limitation of this is that it does not scale
well to large state spaces, since it is impractical to maintain predictions about
all states in the state space. Successor models circumvent this challenge by
framing learning as a density estimation problem. By leveraging methods from
density estimation, an agent can efficiently learn successor models and scale to
high-dimensional state and action spaces (including continuous spaces) with
amortized learning procedures (see section 3.2). Successor features are another
method for circumventing the challenge of representing large state spaces. Here,
we do so by describing states with a shared set of state features. Rather than
making predictions about how much all states will be visited, we make pre-
dictions about how much features will be experienced. Both successor models
and successor features have their own pros and cons. Successor models are use-
ful because they open up new possibilities like supporting temporally abstract
sampling of future states under a policy. Additionally, methods for learning suc-
cessor models typically subsume learning of state features, whereas successor
features typically need a separate mechanism for learning state features. On
the other hand, successor features are easier to learn and more readily enable
stitching together policies concurrently (see section 2.5.1) and sequentially (see
section 2.5.2) in time—though there is progress on doing this with successor
models (see see section 4.2.3).

(the successor model; see section 2.4), and an important generalization (suc-
cessor features; see section 2.5). A visual overview of these predictive repre-
sentations is shown in Figure 2. Applications of these concepts are covered
in see section 4.

2.3 The Successor Representation. The SR, denoted Mπ , was intro-
duced to address the transfer problem described in the previous sec-
tion (Dayan, 1993; Gershman, 2018). In particular, the SR is well suited for
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solving sets of tasks that share the same transition structure but vary in
their reward structure; we delve more into this problem setting later when
we discuss applications.

Like the value function, the SR is a discounted sum over a quantity of
interest known as its cumulant. The value function has reward as its cumu-
lant, whereas the SR has state occupancy as its cumulant:

Mπ (s, s̃) = E

[
H∑

t=0

γ t
I [st+1 = s̃]

∣∣∣∣s0 = s

]
. (2.13)

Here s̃ denotes a future state, and Mπ (s, s̃) ∈ R is the expected discounted
future occupancy of s̃ starting in state s under policy π . An illustration of
the SR and comparison with the value function is shown in Figure 3.

If we define the marginal transition matrix Tπ ∈ R
|S|×|S| by

Tπ (s, s′) =
∑

a

π (a|s)T(s′|s, a), (2.14)

then the SR can be derived analytically from the transition function when
H = ∞ as

Mπ =
∞∑

t=0

γ t[Tπ ]t+1 = Tπ (I − γ Tπ )−1, (2.15)

where Mπ ∈ R
|S|×|S|. Equation 2.15 makes explicit the sense in which the SR

(a predictive representation) is a compilation of the transition matrix (a pre-
dictive model). The SR discards information about individual transitions,
replacing them with their cumulants, analogous to how the value function
replaces individual reward sequences with their cumulants.

Like the value function, the SR obeys a Bellman equation:

Mπ (s, s̃) =
∑

a

π (a|s)
∑

s′
T(s′|s, a)

[
I[s′ = s̃] + γ Mπ (s′, s̃)

]

= E
[
I[s′ = s̃] + γ Mπ (s′, s̃)

]
. (2.16)

This means that it is possible to learn the SR using TD updates similar to
the ones applied to value learning:

M̂π (s, s̃) ← M̂π (s, s̃) + ηδM(s̃), (2.17)

where

δM(s̃) = I[s′ = s̃] + γ M̂π (s′, s̃) − M̂π (s, s̃) (2.18)
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Figure 3: The successor representation (SR). (a) A schematic of an environment
where the agent is a red box at state s13 and the goal is a green box at state
s5. In general, an SR Mπ (s, s̃) (see equation 2.13) describes the discounted state
occupancy for state s̃ when beginning at state s and following policy π . In pan-
els b and c, we showcase Mπ (s13, s̃) for a random policy and an optimal pol-
icy. (b) The SR under a random policy measures high state occupancy near the
agent’s current state (e.g., Mπ (s13, s14) = 5.97) and low state occupancy at points
farther away from the agent (e.g., Mπ (s13, s12) = 0.16). (c) The SR under the op-
timal policy has the highest state occupancy along the shortest path to the goal
(e.g., here, Mπ (s13, s12) = .66), fading as we get farther from the current state. In
contrast to a random policy, states not along that path have 0 occupancy (e.g.,
Mπ (s13, s19) = 0.0). Once we know a reward function, we can efficiently evalu-
ate both policies (see equation 2.19). (d) An example reward function that has a
cost of −0.1 for each state except the goal state where reward is 1. The SR allows
us to efficiently compute (e) the value function under a random policy and (f)
the value function under the optimal policy.

is the TD error. Notice that unlike in TD learning for value, the error is
now vector valued (one error for each state). Once the SR is learned, the
value function for a particular reward function under the policy π can be
efficiently computed as a linear function of the SR:

Vπ (s) =
∑

s̃

Mπ (s, s̃) R (s̃) . (2.19)
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Intuitively, equation 2.19 expresses a decomposition of future reward into
immediate reward in each state and the frequency with which those states
are visited in the near future.

Just as one can condition a value function on actions to obtain a state-
action value function (see equation 2.3), we can condition the SR on actions
as well:5

Mπ (s, a, s̃) = E

[
H∑

t=0

γ t
I [st+1 = s̃]

∣∣∣∣s0 = s, A0 = a

]
(2.20)

= E
[
I[s′ = s̃] + γ Mπ (s′, a′, s̃)

∣∣s0 = s, A0 = a
]
. (2.21)

Given an action-conditioned SR, the action value function for a particular
reward function can be computed as a linear function of the SR with

Qπ (s, a) =
∑

s̃

Mπ (s, a, s̃) R(s̃). (2.22)

Having established some mathematical properties of the SR, we can now
explain why it is useful. First, the SR, unlike model-based algorithms, ob-
viates the need to simulate roll-outs or iterate over dynamic programming
updates because it has already compiled transition information into a con-
venient form: state values can be computed by simply taking the inner prod-
uct between the SR and the immediate reward vector. Thus, SR-based value
computation enjoys efficiency comparable to model-free algorithms.

Second, the SR can, like model-based algorithms, adapt quickly to cer-
tain kinds of environmental changes. In particular, local changes to an en-
vironment’s reward structure induce local changes in the reward function,
which immediately propagate to the value estimates when combined with
the SR.6 Thus, SR-based value computation enjoys flexibility comparable
to model-based algorithms, at least for changes to the reward structure.
Changes to the transition structure, however, require more substantial non-
local changes to the SR due to the fact that an internal model of the detailed
transition structure is not available.

Our discussion has already indicated several limitations of the SR. First,
the policydependence of its predictions limits its generalization ability. Sec-
ond, the SR assumes a finite, discrete state space. Third, it does not general-
ize to new environment dynamics. When the transition structure changes,

5
Note that we overload Mπ to also accept actions to reduce the amount of new nota-

tion. In general, Mπ (s, s̃) = ∑
a π (a|s)Mπ (s, a, s̃).

6
At least initially, these are not exactly the correct value estimates, because the SR is

policy dependent, and the policy itself requires updating, which may not happen instan-
taneously (depending on how the agent is optimizing its policy). Nonetheless, these value
estimates will typically be an improvement—a good first guess. As we will see, human
learning exhibits similar behavior.
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Figure 4: The successor model (SM). A cartoon schematic of a robot leg that
can hop forward. Left: A single-step model can only compute likelihoods for
states at the next time-step. Right: Multistep successor models can compute like-
lihoods for states over some horizon into the future. One key difference between
the SM and the SR is that the SM defines a valid probability distribution. This
means that we can leverage density estimation techniques for learning it over
continuous state and action spaces. Additionally, as this figure suggests, we can
use it to sample potentially distal states (see section 4.4). Adapted with permis-
sion from Janner et al. (2020).

equation 2.15 no longer holds. We discuss in section 3 how the first and
second challenges can be addressed and in section 4.2.3 some attempts to
address the third challenge.

2.4 Successor Models: A Probabilistic Perspective on the SR. As we’ve
discussed, the SR buys efficiency by caching transition structure while
maintaining some model-based flexibility. One thing that is lost, however,
is the ability to simulate trajectories through the state space. In this section,
we introduce a generalization of the SR—the successor model (SM; Janner
et al., 2020; Eysenbach et al., 2020)—that defines an explicit distribution over
temporally abstract trajectories (see Figure 4). Here, “temporal abstraction”
means a conditional distribution over future states within some time hori-
zon rather than only the next time-step captured by the transition model.

The SM uses a k-step conditional distribution over future occupancy as
its cumulant. This k-step conditional distribution P (sk = s̃|s0 = s, π, T ) de-
scribes the probability that the agent is at state s̃ after it follows policy π for
k time steps starting at state s. The SM is then defined as follows:

μπ (s̃|s) = (1 − γ )
∞∑

k=1

γ k
P (sk+1 = s̃|s0 = s, π, T ) , (2.23)

where (1 − γ ) ensures that μπ integrates to 1. In the tabular setting, the SM
is essentially a normalized SR, since

μπ (s̃|s) = (1 − γ )Mπ (s, s̃) . (2.24)
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Predictive Representations 2237

This relationship becomes apparent when we note that the expectation of
an indicator function is the likelihood of the event, that is, E[I[X = x]] =
P(X = x). In the general (nontabular) case, the SR and SM are not equiv-
alent; this distinction has practical consequences for learning in realistic
problems, where a tabular representation is not feasible.

Since the SM integrates to 1, a key difference to the SR is that it defines a
valid probability distribution. This is important because it allows for the SR
to generalize to continuous state and action spaces, where we can leverage
density estimation techniques for estimating this value on a per state basis.
As we will discuss in section 3.2, we can estimate the SM with density es-
timation techniques such as generative adversarial learning (Janner et al.,
2020), variational inference (Thakoor et al., 2022), and contrastive learning
(Eysenbach et al., 2020; Zheng et al., 2023).

SMs are interesting because they are a different kind of environment
model. Rather than defining transition probabilities over next states, they
describe the probability of reaching s̃ within a horizon determined by γ

when following policy π . While we don’t know exactly when s̃ will be
reached, we can answer queries about whether it will be reached within
some relatively long time horizon with less computation compared to
rolling out the base transition model. Additionally, depending on how the
SM is learned, we can also sample from it. This can be useful for policy
evaluation and model-based control (Thakoor et al., 2022). We discuss this
in more detail in section 4.4.

Like the original SR, the SM obeys a Bellman-like recursion,

μπ (s̃|s) = E
[
(1 − γ )T(s̃|s, a) + γμπ

(
s̃|s′)] , (2.25)

where the next-state probability s̃ in the first term resembles one-step re-
ward in equation 2.7 and the second term resembles the expected value
function at the next time step. As with equation 2.19, we can use the SM to
perform policy evaluation by computing

Vπ (s) = 1
1 − γ

Es̃∼μπ (·|s) [R(s̃)] . (2.26)

Additionally, we can introduce an action-conditioned variant of the SM:

μπ (s̃|s, a) = (1 − γ )
∞∑

t=0

γ t
P (st+1 = s̃|s0 = s, a0 = a, π, T )

= (1 − γ )T(s̃|s, a) + γE [μπ (s̃|s, a)] . (2.27)
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We can leverage this to compute an action value:

Qπ (s, a) = 1
1 − γ

Es̃∼μπ (·|s,a) [R(s̃)] . (2.28)

2.5 Successor Features: A Feature-Based Generalization of the SR.
When the state space is large or unknown, the SR can be challenging to com-
pute or learn because it requires maintaining occupancy expectations over
all states. This can also be challenging when dealing with learned state rep-
resentations, as is common in practical learning algorithms (see section 3.1).
In these settings, rather than maintain occupancy measure for states, we
can maintain occupancy measure over cumulants that are features shared
across states, φ(s). This generalization of the SR is known as successor fea-
tures (SFs; Barreto et al., 2017). When φ (s) is a one-hot vector describing the
state the agent is in, SFs are exactly equivalent to the SR. The power of this
representation is particularly apparent when reward can be decomposed
into a dot product of these successor features and a vector w describing
feature preferences for the current task:

R(s, w) = φ (s)	 w. (2.29)

SFs are then predictions of accumulated features φ the agent can expect to
encounter when following a policy π :

ψπ (s) = E

[ ∞∑
t=0

γ tφ (st+1) | s0 = s

]
. (2.30)

Like the SR, SFs obey a Bellman equation:

ψπ (s) = E
[
φ(s′) + γψ(s′)

]
. (2.31)

Under the assumption of equation 2.29, a task-dependent value Vπ (s, a, w)
is equivalent to

Qπ (s, a, w) = E [r(s1) + γ r(s2) + . . . | s0 = s, a0 = a]

= E
[
φ(s1)	w + γφ(s2)	w + . . . | s0 = s, a0 = a

]

= E

[ ∞∑
t=0

γ tφ(st+1) | s0 = s, a0 = a

]	
w

= ψπ (s)	w. (2.32)
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As with the SR and SM, we can introduce an action-conditioned variant of
SFs:

ψπ (s, a) = E

[ ∞∑
t=0

γ tφ (st+1) | s0 = s, a0 = a

]

= E
[
φ(s′) + γψ(s′, a′)

]
. (2.33)

This provides an avenue to reuse these behavioral predictions for new tasks.
Once ψπ (s, a) has been learned, the behavior π can be reused to pursue
a novel reward function R(s, wnew) = φ(s)	wnew by simply changing the
corresponding task encoding wnew:

Qπ (s, a, wnew) = ψπ (s, a)	wnew. (2.34)

As we will see in the next subsection and when we discuss AI applications
(see section 4), this becomes even more powerful when combined with an
algorithm adaptively combining past policies. We discuss research on suc-
cessor features over biologically plausible state features in section 5.3.

2.5.1 Generalized Policy Improvement: Adaptively Combining Policies. One
limitation of equations 2.19 and 2.26 is that they only enable us to recom-
pute the value of states for a new reward function under a known policy.
However, we may want to synthesize a new policy from the other policies
we have learned so far. We can accomplish this with SFs by combining them
with generalized policy improvement (GPI; Barreto et al., 2017), illustrated
in Figure 5.

Assume we have learned (potentially optimal) policies {πi}ntrain
i=1 and their

corresponding SFs
{
ψπi (s, a)

}ntrain

i=1 for ntrain training tasks {wi}ntrain
i=1 . When

presented with a new task wnew, we can obtain a new policy with GPI in
two steps: (1) compute Q-values using the training task SFs and (2) select
actions using the highest Q-value. This operation is summarized as follows:

a∗ (s; wnew) = argmax
a

max
i∈{1,...,ntrain}

{
ψπi (s, a)	wnew

}
= argmax

a
max

i∈{1,...,ntrain}
{
Qπi (s, a, wnew)

}
. (2.35)

If wnew is in the span of the training tasks (wnew = ∑
i αiwi, where

αi ∈ R), the GPI theorem states that π (a|s) = I[a = a∗(s, wnew)] will per-
form at least as well as any of the training policies—Qπ (s, a, wnew) ≥
maxi Qπi (s, a, wnew) ∀(s, a) ∈ (S × A). We discuss how this has been used
for transferring policies in artificial intelligence in section 4.2. We discuss
empirical evidence that humans transfer policies with GPI in section 6.2.
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Figure 5: A schematic of Successor features (SFs; see section 2.5) and General-
ized policy improvement (GPI; see section 2.5.1). Note that we use the shorthand
φt = φ(st ) to represent state features that describe what is visible to the agent at
time t. π corresponds to policies that the agent knows how to perform. (a) Ex-
amples of SFs (see equation 2.30) for the “open drawer” and “open fridge” poli-
cies. In this hypothetical scenario, the state features that agent holds describe
whether an apple, milk, fork, or knife are present. Beginning for the first time
step, the SFs for these policies encode predictions for which of these features
will be present when the policies are executed—predicted to be present for ap-
ple and milk for the open fridge policy and for the fork and knife when the
open drawer policy is executed. (b) The agent can reuse these known policies
with GPI (see equation 2.35). When given a new task, say “get milk,” it is able
to leverage the SFs for the policies to know to decide which behavior will en-
able it to get milk. In this example, the policy for opening the fridge will also
lead to milk. The agent selects actions with GPI by computing Q-values for each
known behavior as the dot-product between the current task and each known
SF. The highest Q-value is then used to select actions. If the agent wants to exe-
cute the option keyboard (OK; see section 2.5.2), they can adaptively set w based
on the current state. For example, at some states, the agent may want to pursue
getting milk, while in others, they may want to pursue getting a fork. Adapted
from Carvalho et al. (2024) with permission.

2.5.2 Option Keyboard: Chaining Together Policies. One advantage of equa-
tion 2.35 is that it facilitates adaptation to linear combinations of train-
ing task encodings. However, when transferring to a new task encoding
wnew, the preferences are constant over time. This becomes problematic
when dealing with complex tasks that necessitate different preferences for
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Table 1: Summary of Predictive Representations That We Focus On.

Predictive representation Cumulant δ: TD update when a′ ∼ π and s′ ∼ T

Qπ (s, a) (sec. 2.2) r(s) r(s′ ) + γ Qπ (s′, a′ ) − Qπ (s, a)
Mπ (s, s̃) (SR; sec. 2.3) I(s = s̃) I(s′ = s̃) + γ Mπ (s′, s̃) − Mπ (s, s̃)
ψπ (s, a) (SFs; sec. 2.5) φ(s) φ(s′ ) + γψπ (s′, a′ ) − ψπ (s, a)
μπ (s̃|s, a) (SM; sec. 2.4) P (st+1 = s̃|s0, a0) (1 − γ )T(s′|s, a) + γμπ (s̃|s′, a′ ) − μπ (s̃|s, a)

Notes: For each, we also describe the “cumulant” that this predictive representation forms
predictions over, along with a corresponding on-policy Bellman update one can use to
learn the representation for a policy π . Qπ (s, a) is the action-value function, which forms
predictions about future reward. Mπ (s, s̃) is the successor representation (SR), forms pre-
dictions about how much a state s̃ will be visited. ψπ (s, a) are successor features (SFs) that
form predictions about how much state features φ(s) will be experienced. μπ (s̃|s, a) is the
successor model (SM), which predicts the likelihood of experiencing s̃ in the future.

different states—for example, tasks that require both avoidance and ap-
proach behaviors at different times.

The Option Keyboard (Barreto et al., 2019, 2020) introduces a solution
to this by employing a state-dependent preference vector ws. This vector is
generated through a policy function g(·), which takes as input the current
state s and the new task wnew, ws = g(s, wnew). Actions can then be chosen
as follows:

a∗
ws

(s; wnew) = argmax
a

max
i∈{1,...,ntrain}

{
ψπi (s, a)	ws

}
. (2.36)

Note that this policy is adaptive—which known policy πi is chosen at a time
step is dependent on which one maximizes the Q-values at that time step.
This is why it’s called the Option Keyboard: ws will induce a set of policies
to be active for a period of time, somewhat like playing a chord on a piano.
We discuss how this has been in artificial intelligence applications to chain
policies in section 4.3.2.

2.6 Summary. The predictive representations introduced above can be
concisely organized in terms of particular cumulants, as summarized in
Table 1. These cumulants have different strengths and weaknesses. Value
functions (reward cumulants) directly represent the key quantity for RL
tasks, but they suffer from poor flexibility. The SR (state occupancy cumu-
lant) and its variations (feature occupancy and state probability cumulants)
can be used to compute values but also retain useful information for gener-
alization to new tasks (e.g., using generalized policy improvement).

3 Practical Learning Algorithms and Associated Challenges

Of the predictive representations discussed in section 2, only SFs
and SMs have been successfully scaled to environments with large,
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high-dimensional state spaces (including continuous state spaces). Thus,
these will be our focus of discussion. We first discuss learning SFs in sec-
tion 3.1 and then learning successor models in section 3.2.

3.1 Learning Successor Features. In this section we discuss practical
considerations for learning successor features, including learning a function
φθ that produces cumulants (see section 3.1.1) and estimating SFs ψθ (see
section 3.1.2).

3.1.1 Discovering Cumulants. One central challenge to learning SFs is that
they require cumulants that are useful for adaptive agent behavior; these
are not always easy to define a priori. In most work, these cumulants have
been hand-designed, but potentially better ones can be learned from ex-
perience. Some general methods for discovering cumulants include lever-
aging metagradients (Veeriah et al., 2019), discovering features that enable
reconstruction (Kulkarni et al., 2016; Machado et al., 2017), and maximiz-
ing the mutual information between task encodings and the cumulants that
an agent experiences when pursuing that task (Hansen et al., 2019). How-
ever, these methods don’t necessarily guarantee that the learned cumu-
lants respect a linear relationship with reward (see equation 2.29). To sat-
isfy this, methods typically enforce this by minimizing the L2-norm of their
difference (Barreto et al., 2017):

Lr = ||r − φθ (s)	w||22. (3.1)

When learning cumulants that support transfer with GPI, one strategy that
can bolster equation 3.1 is to learn an n-dimensional φ vector for n tasks such
that each dimension predicts one task reward (Barreto et al., 2018). Another
strategy is to enforce that cumulants describe independent features (Alver
& Precup, 2021)—for example, by leveraging a modular architecture with
separate parameters for every cumulant dimension (Carvalho et al., 2023)
or by enforcing sparsity in the cumulant dimensions (Filos et al., 2021). We
discuss research on biologically plausible state features in section 5.3.

3.1.2 Estimating Successor Features.
Learning an estimator that can generalize across policies. The first challenge

for learning SFs is that they are defined for a particular policy π . We can mit-
igate this by learning universal successor feature approximators (USFAs; Borsa
et al., 2019), which takes as input policy encodings zw ∈ Zπ , which repre-
sent an encoding of the policy πw that is reward maximizing for task w.
Concretely, we can estimate ψπw (s, a) as

ψπw (s, a) ≈ ψθ (s, a, zw). (3.2)
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This has several benefits. First, one can share the estimator parameters
across policies, which can improve learning. Second, this allows SFs to
generalize across different policies. Leveraging a USFA, the GPI operation
in equation 2.35 can be adapted to perform a max operation over Zπ :

a∗ (s; wnew) = arg max
a∈A

max
zw∈Zπ

{
ψθ (s, a, zw)	wnew

}
. (3.3)

Several algorithms exploit this property (see sections 4.1.1, 4.2.2, and 4.5).
If the policy encoding space is equivalent to the n training tasks, Zπ =
{w1, . . . , wn}, this recovers the original GPI operation (see equation 2.35).
In practice, it is common to identify the policy encoding zw for a task with
its task encoding w, that is, to use zw = w.

Learning successor features while learning a policy. Often SFs need to be
learned simultaneously with policy optimization. This requires the SFs to
be updated along with the policy. One strategy is to simultaneously learn an
action-value function Qθ (s, a, w) = ψθ (s, a, zw)	w that is used to select ac-
tions. One can accomplish this with Q-learning over values defined by the
SFs and task encoding. Q-values are updated toward a target yQ defined
as the sum of the reward R(s′; w) and the best next Q-value. We define the
learning objective LQ as follows:

yQ = R(s′; w) + γψθ (s′, a∗, zw)	w LQ = ||ψθ (s, a, zw)	w − yQ||, (3.4)

where a∗ = argmaxa′ψθ (s′, a′, zw)	w is the action that maximizes features
determined by w at the next time step. To ensure that these Q-values follow
the structure imposed by SFs (see equation 2.32), we additionally update
SFs at a state with a target yψ defined as the sum of the cumulant φ(s′) and
the SFs associated with the best Q-value at the next state:

yψ = φ(s′) + γψθ (s′, a∗, zw) Lψ = ||ψθ (s, a, zw) − yψ||. (3.5)

In an online setting, it is important to learn SFs with data collected by a
policy that chooses actions with high Q-values. This is especially important
if the true value is lower than the estimated Q-value. Because Q-learning
leverages the maximum Q-value when doing backups, it has a bias for over-
estimating value. This can destabilize learning, particularly in regions of the
state space that have been less explored (Ostrovski et al., 2021).

Another strategy to stabilize SF learning is to learn individual SF dimen-
sions with separate modules (Carvalho et al., 2023, 2024). Beyond stabiliz-
ing learning, this modularity also enables approximating SFs that general-
ize better to novel environment configurations (i.e., which are more robust
to novel environment dynamics).

Estimating successor features with changing cumulants. In some cases, the
cumulant itself will change over time (e.g., when the environment is non-
stationary). This is challenging for SF learning because the prediction target
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is nonstationary (Barreto et al., 2018). This is an issue even when the envi-
ronment is stationary but the policy is changing over time: different policies
induce different trajectories and different state features induce different de-
scriptions of those trajectories.

One technique that has been proposed to facilitate modeling a nonsta-
tionary cumulant trajectory is to learn an SF as a probability mass func-
tion (pmf) p(ψ(k)|s, a, w) defined over some set of possible values B =
{b1, . . . , bM}. Specifically, we can estimate an n-dimensional SF ψπw (s, a) ∈
R

n with ψθ (s, a, zw) and represent the kth SF dimension as ψk
θ (s, a, zw) =∑M

m=1 p(ψ(k) = bm|s, a, zw)bm. We can then learn SFs with a negative log-
likelihood loss where we construct categorical target labels y

ψ(k) from the
return associated with the optimal Q-value (Carvalho et al., 2024):

y
ψ(k) = φk

θ (s′) + γψk
θ (s′, a∗, zw), (3.6)

Lψ = −
n∑

k=1

flabel(y
ψ(k) )	 log p(ψ(k)|s, a, zw). (3.7)

Prior work has found that the two-hot representation is a good method for
defining flabel(·) (Carvalho et al., 2024; Schrittwieser et al., 2020). In general,
estimating predictive representations such as SFs with distributional losses
such as equation 3.6 has been shown to reduce the variance in learning up-
dates (Imani & White, 2018). This is particularly important when cumulants
are being learned, as this can lead to high variance in y

ψ(k) .

3.2 Learning Successor Models. In this section, we focus on estimating
μπ (s̃|s, a) with μθ (s̃|s, a). In a tabular setting, one can leverage TD-learning
with the Bellman equation in equation 2.25. However, for very large state
spaces (such as with infinite size continuous state spaces), this is intractable
or impractical. Depending on one’s use case, different options exist for
learning. First, we discuss the setting where one wants to learn an SM they
can sample from (see section 3.2.1). Then we discuss the setting where one
only wants to evaluate an SM for different actions given a target state (see
section 3.2.2).

3.2.1 Learning Successor Models That One Can Sample From. Learning
an SM that can be sampled from is useful for evaluating a policy (equa-
tion 2.26), evaluating a sequence of policies (Thakoor et al., 2022), and in
model-based control (Janner et al., 2020). There are two ways to learn such
SMs: adversarial learning and density estimation (Janner et al., 2020). Ad-
versarial learning has been found to be unstable, so we focus on density
estimation, where the objective is to find parameters θ that maximize the
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log-likelihood of states sampled from μπ :

Lμ = E (s,a)∼p(s,a)
s̃∼μπ (·|s,a)

[
log μθ (s̃ | s, a)

]
. (3.8)

We can optimize this objective as follows. When sampling targets, we need
to sample s̃ in proportion to the discount factor γ . We can accomplish this by
first sampling a time step from a geometric distribution, k ∼ Geom(1 − γ ),
and then selecting the state at that time step, st+k, as the target s̃.

While this is a simple strategy, it has several challenges. For values of γ

close to 1, this becomes a challenging learning problem requiring predic-
tions over very long time horizons. Another challenge is that you are using
st+k obtained under policy π . In practice, we may want to leverage data col-
lected under a different policy. This happens when, for example, we want
to learn from a collection of different data sets, or we are updating our pol-
icy over the course of learning. Learning from such off-policy data can lead
to high bias, or a high variance learning update from off-policy corrections
(Precup et al., 2000).

We can circumvent these challenges as follows. First let’s define a Bell-
man operator Tπ :

(Tπμπ )(s̃|s, a) = (1 − γ )T(s′|s, a) + γ
∑

s′
T(s′|s, a)

∑
a′

π (a′|s′)μ(s̃|s′, a′). (3.9)

With this we can define a cross-entropy temporal-difference loss (Janner
et al., 2020):

Lμ = E (s,a)∼p(s,a)
s̃∼(Tπ μπ )(·|s,a)

[
log μθ (s̃ | s, a)

]
. (3.10)

Intuitively, (Tπμπ )(·|s, a) defines a random variable obtained as follows.
First, sample s′ ∼ T(·|s, a). Terminate and emit s′ with probability (1 − γ ).
Otherwise, sample a′ ∼ π (a′|s′), and then sample s̃ ∼ μπ (·|s′, a′).

The most recent promising method for learning equation 3.10 has been
to leverage a variational autoencoder (Thakoor et al., 2022). Specifically, we
can define an approximate posterior qψ (z|s, a, s̃) and then optimize the fol-
lowing evidence lower bound:

Lμ = E (s,a)∼p(s,a)
s̃∼(Tπ μπ )(·|s,a)

z∼qψ (·|s,a,s̃)

[
log

μθ (s̃ | s, a, z)
qψ (z|s, a, s̃)

]
. (3.11)

While Thakoor et al. (2022) were able to scale their experiments to slightly
more complex domains than Janner et al. (2020), their focus was on com-
posing policies via geometric policy composition (discussed more in sec-
tion 4.2.3), so it is unclear how well their method performs in more
complex domains. The key challenge for this line of work is in sampling
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from μπ (· | s, a), where s̃ can come from a variable next time step after (s, a).
In the next section, we discuss methods that address this challenge.

3.2.2 Learning Successor Models That One Can Evaluate. Sometimes we
may not need to learn an SM that we can sample from, only one that we can
evaluate. This can be used, for example, to generate and improve a policy
that achieves some target state (Eysenbach et al., 2020; Zheng et al., 2023).
One strategy is to learn a classifier pμ

θ that, given (s, a), computes how likely
s̃ is compared to some set of N random (negative) states {s−

i }N
i=1 the agent

has experienced:

pμ
θ (s̃ | s, a, s−

1:N ) = exp( fθ (s, a, s̃))

exp( fθ (s, a, s̃)) + ∑N
i=1 exp( fθ (s, a, s−

i ))
. (3.12)

The function fθ can be chosen to maximize classification accuracy across
random states and actions in the agent’s experience, (s, a) ∼ p(s, a), tar-
get states s̃ drawn from the empirical successor model distribution, s̃ ∼
μπ (s̃ | s, a), and negatives drawn from the state marginal, s−

1:N ∼ p(s):

Lμ = E (s,a)∼p(s,a)
s̃∼μπ (s̃|s,a)
s−1:N∼p(s)

[
log pμ

θ (s̃ | s, a, s−
1:N )

]
. (3.13)

If we can find such an fθ , then the resulting classifier is approximately equal
to the density ratio between μπ (s̃ | s, a) and the state marginal p(s̃) (Poole
et al., 2019; Zheng et al., 2023):

μπ (s̃ | s, a)
p(s̃)

≈ (N + 1) · pμ
θ (s̃ | s, a, s−

1:N ). (3.14)

Optimizing equation 3.13 is challenging because it requires sampling from
μπ . We can circumvent this by instead learning the following TD-like ob-
jective, where we replace sampling from μπ with sampling from the state
marginal and reuse pμ

θ as an importance weight:

Lμ = E (s,a)∼p(s,a)
s′∼T(·|s,a)
a′∼π (a|s′ )

s̃∼p(s)
s−1:N∼p(s)

[
(1 − γ ) log pμ

θ (s′|s, a, s−
1:N )

+ γ (N + 1)pμ
θ (s̃|s′, a′, s−

1:N ) log pμ
θ (s̃|s, a, s−

1:N )
]
. (3.15)

Zheng et al. (2023) show that (under some assumptions) optimizing equa-
tion 3.15 leads to the following Bellman-like update:

pμ
θ (s̃|s, a, s−

1:N ) ← (1 − γ )T(s′ = s̃|s, a) + γE s′∼T(·|s,a)
a′∼π (·|s′ )

[
pμ

θ (s̃|s′, a′, s−
1:N )

]
, (3.16)
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which resembles the original SM Bellman equation (see equation 2.25).
However, one key difference to equation 2.25 is that we parameterize
pμ

θ (s̃|s, a, s−
1:N ) with N + 1 random samples (e.g., from a replay mechanism),

which is a form of contrastive learning. This provides a nonparametric al-
gorithm for learning SMs. With the SR, one performs the TD update for all
states (see equation 2.18); here, one performs this update using a random
sample of N + 1 states.

We can define fθ as the dot product between a predictive representa-
tion ϕθ (·, ·) and label representation φθ (·), fθ (s, a, s̃) = ϕθ (s, a)	φθ (s̃). φθ (s)
can then be thought of as state features analogous to SFs (see section 2.5).
ϕθ (s, a) is a prediction of these future features similar to SFs, ψθ (s, a), with
labels coming from future states; however, it doesn’t necessarily have the
same semantics as a discounted sum (that is, equation 2.32). We use simi-
lar notation because of their conceptual similarity. We can then understand
equation 3.15 as doing the following. The first term in this objective pushes
the prediction ϕθ (s, a) toward the features at the next time step φθ (s′), and
the second term pushes ϕθ (s, a) toward the features at arbitrary state fea-
tures φθ (s̃). Both terms repel ϕθ (s, a) from arbitrary “negative” state features
φθ (s̃−

i ).

4 Artificial Intelligence Applications

In this section, we discuss how the SR and its generalizations have enabled
advances in artificial agents that learn and transfer policies.

4.1 Exploration.

4.1.1 Pure Exploration.
Learning to explore and act in the environment before exposure to reward. In the

“pure exploration” setting, an agent can explore its environment for some
period of time without external reward. In some cases, the goal is to learn a
policy that can transfer to an unknown task wnew. SFs can be used to achieve
such transfer.

One useful property of SFs is that they encode predictions about what
features one can expect when following a policy. Before reward is provided,
this can be used to reach different parts of the state space with different poli-
cies. One strategy is to associate different parts of the state space with differ-
ent parts of a high-dimensional task embedding space (Hansen et al., 2019).
At the beginning of each episode, an agent samples a goal encoding w from
a high-entropy task distribution p(w). During the episode, the agent selects
actions that maximize the features described by w (e.g., with equation 2.32).
As it does this, it learns to predict w from the states it encounters. If p(w) is
parameterized as a von Mises distribution, the agent can learn this predic-
tion by simply maximizing the dot product between the state features φ(s)
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and goal encoding w:

Lφ = log pθ (w|s) = φθ (s)	w. (4.1)

This is equivalent to maximizing the mutual information between φθ (s) and
w. As the agent learns cumulants, it learns SFs as usual (e.g., with equa-
tion 3.5). Thus, one can essentially use a standard SF learning algorithm
and simply replace the cumulant discovery loss (e.g., equation 3.1) with
equation 4.1. Once the agent is exposed to task reward wnew, it can freeze
φθ and solve for wnew (e.g., with equation 3.1). The agent can then use GPI
to find the best policy for achieving wnew by searching over a gaussian ball
defined around wnew. This is equivalent to setting Z = {zi ∼ N (wnew, σ )}n

i=1
for equation 3.3, where σ defines the size of the ball.

Hansen et al. (2019) leveraged this strategy to develop agents that could
explore Atari games without any reward for 250 million time steps and then
have 100,000 time steps to earn reward. They showed that this strategy was
able to achieve superhuman performance across most Atari games, despite
not observing any rewards for most of its experience. Liu and Abbeel (2021)
improved on this algorithm by adding an intrinsic reward function that fa-
vors exploring parts of the state space that are surprising (i.e., that induce
high entropy) given a memory of the agent’s experience. This dramatically
improved sample efficiency for many Atari games.

Exploring the environment by building a map. One strategy for exploring
large state spaces systematically is to build a map of the environment de-
fined over landmarks in the environment. With such a map, an agent can
systematically explore by planning paths toward the frontier of its knowl-
edge (Ramesh et al., 2019; Hoang et al., 2021). Numerous questions arise
in this process. How do we define good landmarks? How do we define
policies that traverse between landmarks? How does an agent identify that
it has made progress between landmarks after it has set a plan or course-
correct if it finds that it accidentally deviated? Hoang et al. (2021) developed
an elegant solution to all of these problems with the successor feature sim-
ilarity (SFS) metric. This metric defines the closeness of two states by the
frequency with which an agent starting in each state visits the same parts
of the environment. Concretely:

Sψ(s1, a, s2) = ψπ̄ (s1, a)	EA∼π̄ [ψπ̄ (s2, A)], (4.2)

Sψ(s1, s2) = EA∼π̄ [ψπ̄ (s1, a)	]EA∼π̄ [ψπ̄ (s2, A)], (4.3)

where π̄ is a uniform policy.7

Through only learning of SFs over pretrained cumulants φ, Hoang et al.
(2021) were able to address all the needs above by exploiting SFS. Let L ⊂ S

7
Note that to avoid excessive notation, we’ve overloaded the definition of Sψ .
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be the set of landmarks discovered so far. The algorithm works as fol-
lows. Each landmark L ∈ L has associated with it a count N(L) for how
often has been visited. A “frontier” landmark LF is sampled in propor-
tion to the inverse of this count. The agent makes a shortest-path plan
of subgoals (s∗

1, . . . , s∗
n) toward this landmark where sn = LF . In order to

navigate to the next subgoal s∗
i , it defines a policy with the action of the

current successor features that are most aligned with the goal’s succes-
sor features, a∗(s, s∗

i ) = argmaxaSψ(s, a, s∗
i ). As it traverses toward the land-

mark, it localizes itself by comparing the current state s to known landmarks
floc(s,L) = argmaxL∈LSψ(s, L). When s∗

i = floc(s,L), it has reached the next
landmark and moves on to the next subgoal. Once a frontier landmark is
found, the agent explores with random actions. The states it experiences
are added to its replay buffer and used in two ways. First, they update the
agent’s current SR. Second, if a state is sufficiently different from known
landmarks, it is added. In summary, the three key functions that one can
compute without additional learning are:

π (s, s∗
i ) = argmax

a
Sψ(s, a, s∗

i ) goal-conditioned policy

floc(s,L) = argmax
L∈L

Sψ(s, L) localization function

fadd(s,L) = L ← L ∪ s if (Sψ(s, L) < εadd) ∀L ∈ L

landmark addition function

The process then repeats. This exploration strategy was effective in explor-
ing both minigrid (Chevalier-Boisvert et al., 2023) and the partially observ-
able 3D VizDoom environments (Kempka et al., 2016).

4.1.2 Balancing Exploration and Exploitation.
Cheap uncertainty computations. Balancing exploration and exploitation is

a central challenge in RL (Sutton & Barto, 2018; Kaelbling et al., 1996). One
method that provides close to optimal performance in tabular domains is
posterior sampling (also known as Thompson sampling, after Thompson,
1933), where an agent updates a posterior distribution over Q-values and
then chooses the value-maximizing action for a random sample from this
distribution (see Russo et al., 2018, for a review). The main difficulties for
implementing posterior sampling are associated with representing, updat-
ing, and sampling from the posterior when the state space is large. Janz et al.
(2019) showed that SFs enable cheap methods for posterior sampling. They
assume the following prior, likelihood, and posterior for the environment
reward:

w ∼ N (0, I) r|w ∼ N (φ(s)	w, β ) w|r, s ∼ N (μw, �w), (4.4)
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where β is the variance of reward around a mean that is linear in the state
feature φ(s); μw and �w are given by analytical solutions for the mean and
variance of the posterior given the gaussian prior/likelihood assumptions
and a set of observations. The posterior distribution for the Q-values is then
given by

Q̂π
SU ∼ N

(
�πμw, �π�w (�π )	

)
, (4.5)

where �π = [ψπ (s, a)]	(s,a)∈S×A is a matrix with each row corresponding to
an SF for a state-action pair. SFs, cumulants, and task encodings are learned
with standard losses (e.g., see equations 3.1 and 3.5).

Count-based exploration. Another method that provides (near) optimal ex-
ploration in tabular settings is count-based exploration with a bonus of
1/

√
N(s) (Auer, 2002), where N(s) is the number of times a state s has been

visited. When the state space is large, it can be challenging to track this
count. Machado et al. (2020) showed that that the L1-norm of SFs is pro-
portional to visitation count and can therefore be used as an exploration
bonus:

Rint(s) = 1
||ψπ (s)||1 . (4.6)

With this exploration bonus, they were able to improve exploration in
sparse-reward Atari games such as Montezuma’s Revenge. Recent work has
built on this idea: Yu et al. (2023) combined SFs with predecessor represen-
tations, which encode retrospective information about the agent’s trajec-
tory. This ideas, motivated by work in neuroscience (Namboodiri & Stuber,
2021), were shown to more efficiently target exploration toward bottleneck
states (i.e., access points between large regions of the state space).

4.2 Transfer. We’ve already introduced the idea of cross-task transfer in
our discussion of GPI. We now review the broader range of ways in which
the challenges of transfer have been addressed using predictive represen-
tations.

4.2.1 Transferring Policies between Tasks. We first consider transfer across
tasks that are defined by different reward functions. In the following two
sections, we consider other forms of transfer.

Few-shot transfer between pairs of tasks. SFs can enable transferring policies
from one reward function R to another function Rnew by exploiting equa-
tion 2.34 with learned cumulant φθ and SFs ψθ for a source task. At transfer
time, one freezes each set of parameters and solves for wnew (e.g., with equa-
tion 3.1). Kulkarni et al. (2016) showed that this enabled an RL agent that
learned to play an Atari game to transfer to a new version of that game
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where the reward function was scaled. Later, Zhu et al. (2017) showed that
this enabled transfer to new “go to” tasks in a photorealistic 3D household
environment.

Continual learning across a set of tasks. Beyond transferring across task
pairs, an agent may want to continually transfer its knowledge across a set
of tasks. Barreto et al. (2017) showed that SFs and GPI provide a natural
framework to do this. Consider sequentially learning n tasks. As the agent
learns new tasks, they maintain a growing library of SFs {ψπi}m

i=1 where
m < n is the number of tasks learned so far. When the agent is learning
the mth task, they can select actions with GPI according to equation 2.35
using wm as the current transfer task. The agent learns SFs for the current
task according to equation 3.5. Zhang et al. (2017) extended this approach to
enable continual learning when the environment state space and dynamics
were changing across tasks but still relatively similar. Transferring SFs to an
environment with a different state space requires leveraging new state fea-
tures. Their solution involved reusing old state features by mapping them
to the new state space with a linear projection. By exploiting linearity in
the Q-value decomposition (see equation 2.34), this allowed reusing SFs for
new environments.

Zero-shot transfer to task combinations. Another benefit of SFs and GPI is
that they facilitate transfer to task conjunctions when they are defined as
weighted sums of training tasks, wnew = ∑n

i=1 αiwi. A clear example is com-
bining “go to” tasks (Barreto et al., 2018, 2020; Borsa et al., 2019; Carvalho
et al., 2023). For example, consider four tasks {w1, . . . , w4} defining by col-
lecting different object types; wnew = (−1) · w1 + 2 · w2 + 1 · w3 + 0 · w4 de-
fines a new task that tries to avoid collecting objects of type 1, while trying
to collect objects of type 2 twice as much as objects of type 3. This approach
has been extended to combining policies with continuous state and action
spaces (Hunt et al., 2019), though it has so far been limited to combining
only two policies. Another important limitation of this general approach is
that it can only specify which tasks to prioritize but cannot specify an order-
ing for these tasks. For example, there is no way to specify collecting object
type 1 before object type 2. One can address this limitation by learning a
state-dependent transfer task encoding as with the Option Keyboard (see
section 2.5.2).

4.2.2 Learning about Nontask Goals. In the previous section, we discussed
the transfer setting where an agent learns about a task w and then subse-
quently wants to transfer this knowledge to another task wnew. In this sec-
tion, we consider an agent that is learning task w and wants to concurrently
learn policies for other tasks (defined by w̃). That is, each experience trying
to accomplish w is reused to learn how to accomplish w̃. This can broadly
be categorized as off-task learning.

Borsa et al. (2019) showed that one can reuse experiences accomplishing
task w to learn control policies for tasks w̃ that are not too far from w in the
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task encoding space by leverage universal SFs. In particular, nearby off-task
goals can be sampled from a gaussian ball around w with standard devia-
tion σ : Z = {w̃i ∼ N (wnew, σ )}n

i=1. Then an SF loss following equation 3.5
would be applied for each nontask goal w̃i. Key to this is that the opti-
mal action for each w̃i would be the action that maximized the features
determined by w̃i at the next time step: a∗ = argmax′

aψθ (s′, a′, w̃i)	w̃i. This
enabled an agent to concurrently learn a policy for not only w but also for
nontask goals w̃i with no direct experience on those tasks in a simple 3D
navigation environment.

Another example where off-task learning is useful is in hindsight expe-
rience replay. Typically, experiences that don’t accomplish a task w don’t
contribute to learning unless some form of reward shaping is employed.
Hindsight experience replay provides a strategy for automating reward
shaping. In this setting, when the agent fails to accomplish w, it relabels
one of the states in its experience as a fictitious goal w̃ for that experience
(Andrychowicz et al., 2017). This strategy is particularly effective when
tasks have sparse rewards as it leads there to be a dense reward signal.
When learning a policy with SMs (see section 2.4), hindsight experience
replay naturally arises as part of the learning objective. It has been shown
to improve sample efficiency in sparse-reward virtual robotic manipulation
domains and long-horizon navigation tasks (Eysenbach et al., 2020, 2022;
Zheng et al., 2023). Despite their potential, learning and exploiting SMs
is still in its infancy, whereas SFs have been more thoroughly studied.
Recently, Schramm et al. (2023) developed an asymptotically unbiased
importance sampling algorithm that leverages SFs to remove bias when
estimating value functions with hindsight experience replay. This enabled
learning for both simulation and real-world robotic manipulation tasks in
environments with large state and action spaces.

4.2.3 Other Advances in Transfer.
Generalization to new environment dynamics. One limitation of SFs is that

they’re tied to the environment dynamics T with which they were learned.
Lehnert and Littman (2020) and Han and Tschiatschek (2021) both attempt
to address this limitation by learning SFs over state abstractions that respect
bisimulation relations (Li et al., 2006). Abdolshah et al. (2021) attempt to
address this by integrating SFs with gaussian processes such that they can
be quickly adapted to new dynamics given a small amount of experience
in the new environment.

Synthesizing new predictions from sets of SFs. While GPI enables combining
a set of SFs to produce a novel policy, it does not generate a novel prediction
of what features will be experienced from a combination of policies. Some
methods attempt to address this by convex combination of SFs (Brantley
et al., 2021; Alegre et al., 2022).

Alternatives to generalized policy improvement. Madarasz and Behrens
(2019) develop the gaussian SF, which learns a set of reward maps for
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different environments that can be adaptively combined to adjudicate be-
tween different policies. While this compared favorably to GPI, these results
were in toy domains; it is currently unclear if their method scales to more
complex settings as gracefully as GPI. A potentially more promising alter-
native to GPI is geometric policy composition (GPC; Thakoor et al., 2022),
which enables estimating Q-values when one follows an ordered sequence
of n policies (π1, . . . , πn). Whereas GPI evaluates how much reward will be
obtained by the best of a set of policies, GPC is a form of model-based con-
trol where the agent evaluates the path obtained from following a sequence
of policies. We discuss this in more detail in section 4.4.

4.3 Hierarchical Reinforcement Learning. Many tasks have multiple
timescales, which can be exploited using a hierarchical architecture in
which the agent learns and acts at multiple levels of temporal abstraction.
The classic example of this is the options framework (Sutton et al., 1999).
An option o is a temporally extended behavior defined by (1) an initia-
tion function Io that determines when it can be activated, (2) a policy πo,
and (3) a function βo that determines when the option should terminate:
o = 〈Io, πo, βo〉. In this section, we discuss how predictive representations
can be used to discover useful options and transfer them across tasks.

4.3.1 Discovering Options to Efficiently Explore the Environment. One key
property of the SR is that it captures the long-range structure of an agent’s
paths through the environment. This has been useful in discovering op-
tions. Machado et al. (2017, 2023) showed that if one performs an eigende-
composition on a learned SR, the eigenvectors corresponding to the highest
eigenvalues could be used to identify states with high diffusion (i.e., states
that tend to be visited frequently under a random walk policy). In particu-
lar, for eigenvector ei, they defined the following intrinsic reward function:

Rint
i (s, s′) = e	

i (φ(s′) − φ(s)), (4.7)

which rewards the agent for exploring diverse parts of the state space. Note
that φ is either a one-hot vector in the case of the SR or state features in the
case of SFs. Here, we focus on the SR. With this reward function, the agent
can iteratively build up a set of options O that can be leveraged to improve
exploration of the environment. The algorithm proceeds as follows:

1. Collect samples with a random policy that selects between between
primitive actions and options. The set of options is initially empty
(O = {∅}).

2. Learn successor representation Mπ from the gathered samples.
3. Get new exploration option o = 〈Io, πo, βo〉. πo is a policy that max-

imizes the intrinsic reward function in equation 4.7 using the cur-
rent SR. The initiation function Io is 1 for all states. The termination
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function βo is 1 when the intrinsic reward becomes negative
(i.e., when the agent begins to go toward more frequent states). This
option is added to the overall set of options, O ← O ∪ {o}.

Agents endowed with this strategy were able to discover meaningful op-
tions and improve sample efficiency in the four-rooms domain, as well as
on challenging Atari games such as Montezuma’s Revenge.

4.3.2 Transferring Options with the SR.
Instant synthesis of combinations of options. One of the benefits of leverag-

ing SFs is that they enable transfer to tasks that are linear combinations of
known tasks (see section 2.5.1). At transfer time, an agent can exploit this
when transferring options by defining subgoals using this space of tasks
(see section 2.5.2). In continuous control settings where an agent has learned
to move in a set of directions (e.g., up, down, left, right), this has enabled
generalization to combinations of these policies (Barreto et al., 2019). For
example, the agent could instantly move in novel directions (e.g., up right,
down left) as needed to complete a task.

Transferring options to new dynamics. One limitation of both options and
SFs is that they are defined for a particular environment and don’t naturally
transfer to new environments with different transition functions. Han and
Tschiatschek (2021) addressed this limitation by learning abstract options
with SFs defined over abstract state features that respect bisimulation rela-
tions (Li et al., 2006). This method assumes transfer from a set of N ψ-MDPs
{Mi}n

i=1 where Mi = 〈Si, Oi, Ti,ψ, γ 〉. It also assumes the availability of
MDP-dependent state-feature functions φMi

(s, a) that map individual MDP
state-action pairs to a shared feature space. Assume an agent has learned a
(possibly) distinct set of options {ok} for each source MDP. The SFs for each
option’s policy are defined as usual (see equation 2.30). When we are trans-
ferring to a new MDP M′, we can map each option to this environment
by mapping its SFs to a policy that produces similar features using an in-
verse reinforcement learning algorithm (Ng et al., 2000). Once the agent has
transferred options to a new environment, it can plan using these options
by constructing an abstract MDP over which to plan. Han and Tschiatschek
(2021) implement this using successor homomorphisms, which define cri-
teria for aggregating states to form an abstract MDP. In particular, pairs of
states (s1, s2) and options (o1, o2) will map to the same abstract MDP if they
follow bisimulation relations (Li et al., 2006) and if their SFs are similar:

||ψo1 (s1, a) − ψo2 (s2, a)|| ≤ εψ, (4.8)

where εψ is a similarity threshold. With this method, agents were able to
discover state abstractions that partitioned large grid worlds into intuitive
segments and successfully plan in novel MDPs with a small number of
learning updates.
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4.4 Jumpy Model-Based Reinforcement Learning. The successor
model (SM) is interesting because it offers a novel way to do model-based
RL. Traditionally, a model-based agent simulates trajectories with a single-
step model. While this is flexible, it is also expensive. SMs enable an alterna-
tive strategy, where the agent instead samples and evaluates likely (poten-
tially distal) states that will be encountered when following some policy π .
As mentioned in section 4.2.3, Thakoor et al. (2022) leverage this property
to develop generalized policy composition (GPC), a novel algorithm that
enables a jumpy form of model-based RL. Rather than simulate trajectories
defined over next states, agents simulate trajectories by using SMs to jump
between states using a given set of policies. While this is not as flexible as
simulating trajectories with a single-step model, it is much more efficient.

In RL, one typically uses a large discount factor (γ ≈ 1). When learn-
ing an SM, this is useful because you can learn likelihoods over potentially
very distal states. However, this makes learning an SM more challenging.
GPC mitigates this challenge by composing a shorter horizon SM μπ

β with
a longer horizon SM μπ

γ , where β < γ . Composing two separate SMs with
different horizons has the following benefits. An SM with a shorter horizon
μπ

β is easier to learn but cannot sample futures as distal as μπ
γ ; on the other

hand, μπ
γ is harder to learn but can make very long-horizon predictions and

better avoids compounding errors. By combining the two, Thakoor et al.
(2022) studied how these two errors can be traded off.

Intuitively, GPC works as follows. Given a starting state-action pair
(s0, a0) and policies (π1, . . . , πn), the agent samples a sequence of n − 1 next
states with our shorter horizon SM μ

πi
β and πi, that is, s1 ∼ μ

π1
β (·|s0, a0), a1 ∼

π1(·|s1), s2 ∼ μ
π1
β (·|s1, a1), and so on. The agent then samples a (potentially

more distal) state sn from the longer-horizon SM, μπ
γ , sn ∼ μπn

β (·|sn−1, an−1).
The reward estimates for the sampled state-action pairs can be combined
as a weighted sum to compute Qπ (s0, a0) analogous to equation 2.28 (see
Thakoor et al., 2022, for technical details). Leveraging GPC enabled conver-
gence with an order of magnitude fewer samples in the four-rooms domain
and in a continuous-control maze navigation domain.

4.5 Multiagent Reinforcement Learning. As we’ve noted, the SR is
conditioned on a policy π . In a single-agent setting, the SR provides pre-
dictions about what that agent can expect to experience when executing the
policy. In multiagent settings, one can parameterize this prediction with an-
other agent’s policy to form predictions about what one can expect to see
in the environment when other agents follow their own policies. This is the
basis for numerous algorithms that aim to learn about, from, and with other
agents (Rabinowitz et al., 2018; Kim et al., 2022; Filos et al., 2021; Gupta et al.,
2021; Lee et al., 2019).

4.5.1 Learning about Other Agents. Rabinowitz et al. (2018) showed that
an AI agent could learn aspects of theory of mind (including passing a false
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belief test) by meta-learning SFs that described other agents. While Rabi-
nowitz did not explicitly compare against humans (and was not trying to
directly model human cognition), this remains exciting as a direction for
exploring scalable algorithms for human-like theory of mind.

4.5.2 Learning from Other Agents. One nice property of SFs is that they
can be learned with TD learning using off-policy data (i.e., data collected
from a policy different from the one currently being executed). This can be
leveraged to learn SFs for the policies of other agents just as an agent learns
SFs for their own policy. Filos et al. (2021) exploited this to design an agent
that simultaneously learned SFs for both its own policy and for multiple
other agents. They were then able to generalize effectively to new tasks via
a combination of all of their policies by exploiting GPI (see equation 2.35).

4.5.3 Learning with Other Agents. One of the key benefits of leveraging
universal SFs with GPI (see equation 3.3) is that you can systematically
change the Q-value used for action selection by (1) shifting the policy en-
coding zπ defining the SF or (2) shifting the feature preferences w that are
being maximized. Gupta et al. (2021) exploit this for cooperative multiagent
RL. Let s(i) denote the state of the ith agent and a(i) ∈ Ai denote the action
they take. Now let ψθ (s(i), a, zπ ) denote that agent’s SFs for policy encoding
zπ , let Ctasks denote the set of possible feature preferences that agents can
follow, and let Cπ denote the set of possible policy encodings over which
agents can make predictions. Gupta et al. (2021) studied the cooperative
setting where the overall Q-value is simply the sum of individual Q-values.
If Cπ denotes policies for separate but related tasks, acting in accordance to

a(i) = argmax
a∈Ai

max
w∈Ctasks

max
zπ ∈Cπ

{
ψθ

(
s(i), a, zπ

)	
w

}
(4.9)

enables a team of agents to take actions that systematically explore the en-
vironment on tasks specified by Ctasks. These teams were able to improve
exploration and zero-shot generalization in a variety of cooperative multi-
agent environments including StarCraft (Samvelyan et al., 2019).

4.6 Other Artificial Intelligence Applications. The SR and its general-
izations have been broadly applied within other areas of AI. For example,
it has been used to define an improved similarity metric in episodic control
settings (Emukpere et al., 2021). By leveraging SFs, one can incorporate in-
formation from previously experienced states with similar dynamics to the
current state. The SR has also been applied toward improving importance
sampling in off-policy learning. If the agent learns a density ratio similar to
equation 3.13, this can enable simpler marginalized importance sampling
algorithms (Liu et al., 2018) that improve off-policy evaluation (Fujimoto
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et al., 2021). In addition to these examples, we highlight the following
applications of the SR.

4.6.1 Representation Learning. Learning SMs can obviate the need for sep-
arate representation losses. In many applications, the reward signal is not
enough to drive learning of useful representations. Some strategies to ad-
dress this challenge include data augmentation and learning of auxiliary
tasks. Learning the SM has been shown to enable representation learning
with superior sample efficiency without using these additions (Eysenbach
et al., 2020, 2022; Zheng et al., 2023). Predictive representations can also be
used to define an auxiliary task for representation learning, which has been
shown to be helpful in several settings. A simple example comes from in-
specting the loss for learning SFs (see equation 3.5). In standard Q-learning,
the agent learns only about achieving task-specific reward. When learning
SFs, the agent also learns representations that enable achieving state fea-
tures that are potentially not relevant for the current task (i.e., the agents
are by default leaning auxiliary tasks). This important ability is even pos-
sible in a continual learning setting where the distribution of state features
are nonstationary (McLeod et al., 2021). Another interesting example comes
from proto-value networks (Farebrother et al., 2023). The authors show that
if one learns a successor measure (a set-inclusion-based generalization of
the SR) over random sets, this can enable the discovery of predictive repre-
sentations that enable very fast learning in the Atari learning environment.

4.6.2 Learning Diverse Policies. A final application of the SR has been in
learning diverse policies. In the mujoco environment, Zahavy et al. (2021)
showed that SFs enabled discovering a set of diverse policies for controlling
a simulated dog avatar. Their approach used SFs to prospectively summa-
rize trajectories. A set of policies was than incrementally learned so that
each new policy would be different in its expected features from all policies
learned so far. This idea was then generalized to diversify chess playing
strategies based on their expected future features (Zahavy et al., 2023).

5 Neuroscience Applications

In this section, we discuss how the computational ideas reviewed above
have been used to understand a variety of brain systems. Medial tempo-
ral lobe regions, and in particular the hippocampus, appear to encode pre-
dictive representations. We review evidence for this claim and efforts to
formalize its mechanistic basis in neurobiology. We also discuss how vector-
valued dopamine signals may provide an appropriate learning signal for
these representations.

5.1 A Brief Introduction to the Medial Temporal Lobe. Before dis-
cussing evidence for predictive representations, it is important to take a
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Figure 6: Spatial representations in the medial temporal lobe. As a rodent
navigates space (e.g., a rectangular arena; top left), place cells recorded in re-
gions CA1 and CA3 of hippocampus fire in stable, sparse representations of
self-location (bottom left; hot colors indicate increased neuronal activity). Con-
versely, grid cells in neighboring medial entorhinal cortex (EC; bottom right),
which provides input to both CA1 and CA3 directly, as well as CA3 via dentate
gyrus (DG; solid arrows imply directional connectivity between regions), have
spatially periodic hexagonal firing patterns tiling the entire environment. Ad-
ditionally, boundary-responsive neurons in both medial entorhinal cortex and
subiculum (SUB) fire when the animal occupies specific positions relative to ex-
ternal and internal environmental boundaries.

sufficiently broad view of the medial temporal lobe’s functional organiza-
tion. Not everything we know about these regions fits neatly into a theory of
predictive representations. Indeed, classical views are quite different, em-
phasizing spatial representation and episodic memory.

Extensive evidence identifies the hippocampus and associated cor-
tical regions as providing a neural-level representation of space, often
conceptualized as a cognitive map (O’Keefe & Nadel, 1978; Morris et al.,
1982, see also section 6.4). Integral to this framework are the distinct firing
patterns of various cell types found in structures across the hippocampal
formation (see Figure 6). Place cells, in regions CA3 and CA1, offer a
temporally stable, sparse representation of self-location able to rapidly re-
organize in novel environments—the phenomenon of remapping (O’Keefe
& Dostrovsky, 1971; Muller & Kubie, 1987; Bostock et al., 1991).

Subiculum and dentate gyrus also contain spatially modulated neurons
with broadly similar characteristics, the former tending to be diffuse and
elongated along environmental boundaries (Lever et al., 2009) while the lat-
ter are extremely sparse (Jung & McNaughton, 1993; Leutgeb et al., 2007).
In contrast, in medial entorhinal cortex (mEC), the primary cortical partner
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of hippocampus, the spatially periodic firing patterns of grid cells effec-
tively tile the entire environment (see Figure 6) and are organized into dis-
crete functional modules of different scale (Hafting et al., 2005; Barry et al.,
2007; Stensola et al., 2012). The highly structured activity of grid cells has
provoked a range of theoretical propositions pointing to roles in path inte-
gration (McNaughton et al., 2006; Burgess et al., 2007), vector-based nav-
igation (Bush et al., 2015; Banino et al., 2018), and as an efficient basis set
for spatial generalization (Whittington et al., 2020). Notably, mEC also con-
tains a “zoo” of other cell types with functional characteristics related to
self-location, including head direction cells (Sargolini et al., 2006), border
cells (Solstad et al., 2008), speed cells (Kropff et al., 2015), and multiplexed
conjunctive responses (Sargolini et al., 2006; Hardcastle et al., 2017).

In summary, the medial temporal lobe exhibits remarkable functional di-
versity. We now turn to the claim that predictive principles offer a unifying
framework for understanding aspects of this diversity.

5.2 The Hippocampus as a Predictive Map. Accumulating evidence
indicates that neurons within the hippocampus and its surrounding struc-
tures, particularly place and grid cells, demonstrate predictive character-
istics consistent with a predictive map of spatial states. Stachenfeld et al.
(2017) were the first to systematically explore this perspective, establishing
a connection between the responses of hippocampal neurons and the SR.8

They argued that place cells were not inherently representing the animal’s
spatial location, but rather its expectations about future spatial locations.
Specifically, they argued that the receptive fields of place cells correspond
to columns of the SR matrix Mπ from section 2.3 (see Figure 7, left). This im-
plies that each receptive field is a retrodictive code, in the sense that the cells
are more active in locations that tend to precede the cell’s “preferred” loca-
tion (i.e., the location of the peak firing). The population activity of place
cells at a given time corresponds to a row of the SR matrix; this is a pre-
dictive code, in the sense that they collectively encode expectations about
upcoming states.

In line with this hypothesis, the tuning of place fields (see Figure 7, bot-
tom left) is influenced by the permissible transitions afforded by an envi-
ronment: they do not typically cross environmental boundaries like walls,
tending to extend along them, mirroring the trajectories animals follow
(Alvernhe et al., 2011; Tanni et al., 2022). Alternations made to an environ-
ment’s layout, affecting the available paths, influence the activity of adja-
cent place cells, consistent with the SR (Stachenfeld et al., 2017). Notably,
even changes in policy alone, such as training rats to switch between for-
aging and directed behavior, can markedly alter place cell firing (Markus

8
Earlier ideas about predictive processing in the hippocampus were explored by sev-

eral authors (Levy, 1996; Levy et al., 2005; Buckner, 2010; Lisman & Redish, 2009), though
these were not framed in terms of the SR or related ideas.
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Figure 7: Successor representation model of the hippocampus and medial en-
torhinal cortex. As an agent explores a linear track environment in a unidirec-
tional manner, the SR skews backward down the track opposite to the direction
of motion (top left; hot colors indicate increased predicted occupancy of the
agent’s depicted state), as observed in hippocampal place cells (Mehta et al.,
2000). In a 2D arena, the SR forms place cell–like sparse representations of self-
location (bottom left), while the eigenvectors of the SR form spatially periodic
activity patterns reminiscent of entorhinal grid cells (top right). Similar to real
grid cells (Krupic et al., 2015), the periodicity of these eigenvectors is deformed
in polarized environments such as trapezoids (bottom right).

et al., 1995), also broadly consistent with the SR. Further, when animals are
trained to generate highly stereotyped trajectories, for example, repeatedly
traversing a track in one direction, CA1 place fields increasingly exhibit a
backward skew, opposite the direction of travel (Mehta et al., 2000), thereby
anticipating the animal’s future state. This arises naturally from learning
the SR, since the upcoming spatial states become highly predictable when
agents consistently move in one direction, resulting in a backward skew of
the successor states (see Figure 7, top left). The basic effect is captured in
simple grid worlds like those used by Stachenfeld et al. (2017), but when
the anchoring is replaced with continuous feature-based methods, the suc-
cessor features also capture the backward shift in field peak observed in
neural data (Mehta et al., 2000; George et al., 2023).

While the properties of place cells are consistent with encoding the SR,
grid cells appear to resemble the eigenvectors of the SR (see Figure 7, right).
Specifically, eigendecomposition of the SR matrix Mπ yields spatially pe-
riodic structures of varying scales, heavily influenced by environmental
geometry (Stachenfeld et al., 2017) while being relatively robust to the un-
derlying policy (De Cothi & Barry, 2020). Broadly, these resemble grid cells,
but notably lack the characteristic hexagonal periodicity except when ap-
plied to hexagonal environments. This discrepancy, however, is likely not
significant because subsequent work indicates that biological constraints,
such as nonnegative firing rates (Dordek et al., 2016; Sorscher et al., 2019),
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Figure 8: A successor representation with neurobiological state features. (A)
Boundary responsive cells, present in subiculum and entorhinal cortex, are used
as state features for learning successor features and their eigenvectors (De Cothi
& Barry, 2020). These can capture more nuanced characteristics of both place
and grid cells compared to one-hot spatial features derived from a grid world.
For example, the eigenvectors have increased hexagonal periodicity relative to
a grid world SR model. (B) The successor features can convey duplicated fields
when additional walls are inserted in the environment, as observed in real place
cells (Barry et al., 2006).

efficiency considerations (Dorrell et al., 2023), and neurobiologically plau-
sible state features (De Cothi & Barry, 2020) tend to move these solutions
closer to the expected hexagonal activity patterns (see Figure 8A). The
key point then is that environmental geometries that polarize the transi-
tions available to an animal produce SR eigenvectors with commensurate
distortions, matching observations that grid firing patterns are also de-
formed under such conditions (Derdikman et al., 2009; Krupic et al., 2015).
Notably, this phenomenon is also observed in open-field environments with
straight boundaries, where both biological grid cells and SR-derived eigen-
vectors exhibit a tendency to orient relative to walls (Krupic et al., 2015;
De Cothi & Barry, 2020). Complementary evidence comes from virtual re-
ality studies of human subjects, where errors in distance estimates made
by participants mirrored distortions in eigenvector-derived grid cells (Bell-
mund et al., 2020).

Although place and grid cells are predominantly conceptualized as spa-
tial representations, it is increasingly clear that these neurons also represent
nonspatial state spaces (Constantinescu et al., 2016; Aronov et al., 2017); in
some cases, activity can be interpreted as encoding an SR over such state

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/11/2225/2474294/neco_a_01705.pdf by guest on 10 O
ctober 2024



2262 W. Carvalho et al.

spaces. For example, a study by Garvert et al. (2017) showed human par-
ticipants a series of objects on a screen in what appeared to be a random
order. However, unknown to the participants, the sequence was derived
from a network of nonspatial relationships, where each object followed cer-
tain others in a predefined pattern. Brain imaging found that hippocampal
and entorhinal activity mirrored the nonspatial predictive relationships of
the objects, as if encoded by an SR (see Brunec & Momennejad, 2022).

5.3 Learning a Biologically Plausible SR. In much of the neuroscience
work, SRs are formulated over discrete state spaces, facilitating analysis and
enabling direct calculation for diffusive trajectories. In spatial contexts, this
corresponds to a grid world with one-hot-location encoding, a method that
can produce neurobiologically plausible representations (Stachenfeld et al.,
2017). However, the brain must use biologically plausible learning rules and
features derived from sensory information, with the choice of state features
φ(s) exerting significant influence on the resultant SFs ψπ (s) (described in
section 2.5).

De Cothi and Barry (2020) employed idealized boundary vector cells
(BVCs)—neurons coding for distance and direction to environmental
boundaries—as a basis over which to calculate a spatial SR. BVCs have been
hypothesized as inputs to place cells (Hartley et al., 2000). They resemble
the boundary-responsive cells found in the mEC (Solstad et al., 2008) and
subiculum (Barry et al., 2006; Lever et al., 2009); hence, they are plausibly
available to hippocampal circuits (see Figure 8A). The SFs of these neuro-
biological state features and their eigendecomposition resemble place and
grid fields as before, but also captured more of the nuanced characteris-
tics of these spatially tuned neurons—for example, the way in which place
fields elongate along environmental boundaries (Tanni et al., 2022) and du-
plicate when additional walls are introduced (see Figure 8B; Barry et al.,
2006). Geerts et al. (2020) employed a complementary approach, using an
SR over place cell state features in parallel with a model-free framework
trained on egocentric features. The dynamics of the interaction between
these two elements mirrored the behavioral preference of rodents, which
initially favor a map-based navigational strategy, before switching to one
based on body turns (Geerts et al., 2020; Packard & McGaugh, 1996).

Subsequent models expanded on these ideas. While these differ in terms
of implementation and focus, they employ the common idea of embed-
ding transition probabilities into the weights of a network using biolog-
ically plausible learning rules. Fang et al. (2023) advanced a framework
using a bespoke learning rule acting on a recurrent neural network sup-
plied with features derived from experimental recordings. The network
was sufficient to calculate an SR and could do so at different temporal
discounts, producing SFs that resembled place cells. Bono et al. (2023) ap-
plied spike-time-dependent plasticity (STDP; Bi & Poo, 1998; Kempter et al.,
1999), a Hebbian learning rule sensitive to the precise ordering of pre- and
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postsynaptic spikes, to a single-layer spiking network. Because the order-
ing of spikes from spatial inputs inherently reflects the sequence of tran-
sitions between them, this configuration also learns an SR. Indeed, the
authors were able to show that the synaptic weights learned by this al-
gorithm are mathematically equivalent to TD learning with an eligibility
trace. Furthermore, temporally accelerated biological sequences, such as re-
play (Wilson & McNaughton, 1994; Ólafsdóttir et al., 2016), provide a means
to quickly acquire SRs for important or novel routes. Finally, George et al.
(2023) followed a similar approach, showing that STDP (Bi & Poo, 1998) ap-
plied to theta sweeps—the highly ordered sequences of place cell spiking
observed within hippocampal theta cycles (O’Keefe & Recce, 1993; Foster
& Wilson, 2007)—was sufficient to rapidly learn place field SFs that were
strongly modulated by agent behavior, consistent with empirical observa-
tions. Additionally, because the speed and range of theta sweeps are directly
linked to the size of the underlying place fields, the authors also noted that
the gradient of place field sizes observed along the dorsal-ventral axis of
the hippocampus inherently approximates SFs with decreasing temporal
discounts (Kjelstrup et al., 2008; Momennejad & Howard, 2018).

The formulation used by George et al. (2023) highlights a paradox: while
place fields can serve as state features, they are also generated as SFs. This
dual role might suggest a functional distinction between areas such as CA3
and CA1, with CA3 potentially providing the spatial basis and CA1 rep-
resenting SFs. Alternatively, spatial bases could originate from upstream
circuits, such as mEC, as proposed in the Fang et al. (2023) model. Fur-
thermore, it is conceivable that the initial rapid formation of place fields is
governed by a distinct plasticity mechanism, such as behavioral-timescale
plasticity (Bittner et al., 2017). Once established, these fields would then
serve as a basis for subsequent SF learning. Such a perspective is compati-
ble with observations that populations of place fields in novel environments
do not immediately generate theta sweeps (Silva et al., 2015).

These algorithms learn SFs under the premise that the spatial state is
fully observable, for example, by a one-hot encoding in a grid world or
the firing of BVCs computed across the distances and directions to nearby
walls. However, in reality, states are often only partially observable and in-
herently noisy due to sensory and neural limitations. Vértes and Sahani
(2019) present a mechanism for how the SR can be learned in partially
observable noisy environments, where state uncertainty is represented in
a feature-based approximation via distributed, distributional codes. This
method supports RL in noisy or ambiguous environments, for example,
navigating a corridor of identical rooms.

In summary, the SR framework can be generalized to a state space com-
prising continuous, nonidentical, overlapping state features, and acquired
with biological learning rules. As such, it is plausible that hippocampal
circuits could in principle instantiate a predictive map, or close approx-
imation, based on the mixed population of spatially modulated neurons
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available from its inputs. The models reviewed above demonstrate ways in
which the SR could be learned online during active experience. Nonethe-
less, much learning in the brain is achieved offline, during periods of wake-
ful rest or sleep. One candidate neural mechanism for this is replay, rapid
sequential activity during periods of quiescence.

5.4 Replay. During periods of sleep and awake rest, hippocampal place
cells activate in rapid sequences that recapitulate past experiences (Wilson
& McNaughton, 1994; Foster & Wilson, 2007). These reactivations, known
as replay, often coordinate with activity in the entorhinal (Ólafsdóttir et al.,
2016) and sensory cortices (Ji & Wilson, 2007; Rothschild et al., 2017), and
are widely thought to be a core mechanism supporting system-level con-
solidation of experiential knowledge (Girardeau et al., 2009; Ego-Stengel
& Wilson, 2010; Ólafsdóttir et al., 2015). In linear track environments, hip-
pocampal place cells typically exhibit directional tuning with firing fields
that disambiguate travel in either direction (Navratilova et al., 2012). This
directionality enables two functional classes of replay to be distinguished:
forward replay where the sequence reflects the order in which the animal
experienced the world, and reverse replay where the behavioral sequence
is temporally reversed (analogous to the animal walking tail-first down the
track). Intriguingly, the phase of a navigation task has been shown to influ-
ence the type of replay that occurs; for example, reverse replay is associated
with receipt of reward at the end of trials, while forward replay is more
abundant at the start of trials prior to active navigation (Diba & Buzsáki,
2007).

Mattar and Daw (2018) modeled the emergence of forward and reverse
replays using a reinforcement learning agent that accesses memories of lo-
cations in an order determined by their expected utility. Specifically, the
agent prioritizes replaying memories as a balance of two requirements: the
need to evaluate imminent choices versus the gain from propagating newly
encountered information to preceding locations. The need term for a spa-
tial state corresponds to its expected future occupancy given the agent’s
current location, thus utilizing the definition of the SR (see section 2.3 and
equation 2.13) to provide a measure for how often in the near future that
state will tend to be visited. The gain term represents the expected increase
in reward from visiting that state. This mechanism produces sequences that
favor adjacent backups: upon discovery of an unexpected reward, the last
action executed will have a positive gain, making it a likely candidate for
replay. Thus, value information can be propagated backward by chaining
successive backups in the reverse direction, simulating reverse replay. Con-
versely, at the beginning of a trial, when the gain differences are small and
the need term dominates, sequences that propagate value information in
the forward direction will be the likely candidates for replay, prioritizing
nearby backups that extend forward through the states the agent is expected
to visit in the near future.
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Sequential neural activity in humans has similarly been observed to ex-
hibit orderings consistent with sampling based on future need. Using a
statistical learning task with graph-like dependencies between visual cues
(Schapiro et al., 2013; Garvert et al., 2017; Lynn et al., 2020), Wittkuhn et al.
(2022) showed participants a series of animal images drawn from a ring-like
graph structure in either a uni- or bidirectional manner. Using fMRI data
recorded during 10 s pauses between trials, Wittkuhn et al. (2022) found
forward and reverse sequential activity patterns in visual and sensorimo-
tor cortices, a pattern well captured by an SR model learned from the graph
structure participants experienced.

5.5 Dopamine and Generalized Prediction Errors. As described in sec-
tion 2.3, TD learning rules provide a powerful algorithm for value estima-
tion. The elegant simplicity of this algorithm led neuroscientists to explore
if, and how, TD learning might be implemented in the brain. Indeed, one
of the celebrated successes of neuroscience has been the discovery that the
activity of midbrain dopamine neurons appears to report reward predic-
tion errors (Schultz et al., 1997) consistent with model-free RL algorithms
(see section 2.2, equation 2.11). This successfully accounts for many aspects
of dopamine responses in classical and instrumental conditioning tasks
(Starkweather & Uchida, 2021).

While elegant, the classical view that dopamine codes for a scalar reward
prediction error does not explain more heterogeneous aspects of dopamine
responses. For example, the same dopamine neurons also respond to novel
and unexpected stimuli (Ljungberg et al., 1992; Horvitz, 2000) and to errors
in predicting the features of rewarding events, even when value remains
unchanged (Chang et al., 2017; Takahashi et al., 2017; Stalnaker et al., 2019;
Keiflin et al., 2019). Russek et al. (2017) highlighted the biological plausi-
bility of the SR TD learning rule (see equations 2.17 and 2.18) in light of its
similarity to the model-free TD learning rule (see equation 2.11), while re-
fraining from making any explicit connections between vector-valued SR
TD errors and dopamine. Gardner et al. (2018) took this idea further and
proposed an extension to the classic view of dopamine, suggesting that it
also encodes prediction errors related to sensory features. According to this
model, dopamine reports vector-valued TD errors suitable for updating SFs
(see section 2.5), using the fact that SFs obey a Bellman equation and hence
are learnable by TD. This model explains a number of phenomena that are
puzzling under a classic TD model based only on scalar reward predictions.

First, it explains why the firing rate of dopamine neurons increases af-
ter a change in reward identity, even when reward magnitude is held fixed
(Takahashi et al., 2017): changes in reward identity induce a sensory pre-
diction error that shows up as one component of the error vector. Second,
it explains, at least partially, why subpopulations of dopamine neurons
encode a range of different nonreward signals (Engelhard et al., 2019;
de Jong et al., 2022; Gonzalez et al., 2023). Third, it explains why optogenetic
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manipulations of dopamine influence conditioned behavior even in the ab-
sence of reward (Chang et al., 2017; Sharpe et al., 2017).

How do dopamine neurons encode a vector-valued error signal? One
possibility is that the errors are distributed across population activity. Pur-
suing this hypothesis, Stalnaker et al. (2019) analyzed the information con-
tent of dopamine neuron ensembles. They showed that reward identity
can be decoded from these ensembles, but not from single neuron activ-
ity. Moreover, they showed that this information content disappeared over
the course of training following an identity switch, consistent with the
idea that error signals go to 0 as learning proceeds. The question remains
how a vector-valued learning system is implemented biophysically. Some
progress in this direction (albeit within a different theoretical framework)
has been made by Wärnberg and Kumar (2023).

6 Cognitive Science Applications

A rich body of work dating back over a century has linked RL algorithms to
reward-based learning processes in humans and nonhuman animals (Niv,
2009). Empirical findings align with the theoretical properties of model-
based and model-free control (described in section 2.2), suggesting that
model-based control underlies reflective, goal-directed behaviors, while
model-free control underlies reflexive, habitual behaviors. The existence of
both systems in the brain and their synergistic operation has received ex-
tensive support by a wide range of behavioral and neural studies across a
number of species and experimental paradigms (see Dolan & Dayan, 2013,
for a detailed review).

Recall that the SR (described in section 2.3) occupies an intermediate
ground between model-based and model-free algorithms. This can make
it advantageous when flexibility and efficiency are both desirable, which is
the case in most real-world decision-making scenarios. In the field of cog-
nitive science, several lines of research suggest that human learning and
generalization are indeed consistent with the SR and related predictive rep-
resentations. In this section, we examine studies showing that patterns of re-
sponding to changes in the environment (Momennejad et al., 2017), transfer
of knowledge across tasks (Tomov et al., 2021), planning in spatial domains
(Geerts et al., 2024), and contextual memory and generalization (Gershman
et al., 2012; Smith et al., 2013; Zhou et al., 2023) exhibit signature character-
istics of the SR-like predictive representations that cannot be captured by
pure model-based or model-free strategies.

6.1 Revaluation. Some of the key findings pointing to a balance be-
tween a goal-directed system and a habitual system in the brain came from
studies of reinforcer revaluation (Adams & Dickinson, 1981; Adams, 1982;
Dickinson, 1985; Holland, 2004). In a typical revaluation paradigm, an an-
imal (e.g., a rat) is trained to associate a neutral action (e.g., a lever press)
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with an appetitive outcome (e.g., food). The value of that outcome is sub-
sequently reduced (e.g., the rat is satiated, so food is less desirable), and
the experimenter measures whether the animal keeps taking the action in
the absence of reinforcement. Goal-directed control predicts that the animal
would not take the action, since the outcome is no longer valuable, while ha-
bitual control predicts that the animal would keep taking the action, since
the action itself was not devalued. Experimenters found that under some
conditions—such as moderate training, complex tasks, or disruptions to
dopamine inputs to striatum—behavior appears to be goal directed (e.g.,
lever pressing is reduced), while under other conditions—such as exten-
sive training or disruptions to prefrontal cortex—behavior appears to be
habitual (e.g., the rat keeps pressing the lever).

Amodeling study by Daw et al. (2005) interpreted these findings through
the lens of RL (see section 2.2). The authors formalized the goal-directed
system as a model-based controller putatively implemented in prefrontal
cortex and the habitual system as a model-free controller putatively im-
plemented in dorsolateral stratum. They proposed that the brain arbitrates
dynamically between the two controllers based on the uncertainty of their
value estimates, preferring the more certain (and hence likely more accu-
rate) estimate for a given action. Under this account, moderate training or
complex tasks would favor the model-based estimates, since the model-free
estimates may take longer to converge and hence be less reliable. On the
other hand, extensive training would favor the model-free estimates, since
they will likely have converged and hence be more reliable than the noisy
model-based simulations.

One limitation of this account is that it explains sensitivity to outcome
revaluation in terms of a predictive model, but it does not rule out the possi-
bility that the animals may instead be relying on a predictive representation.
A hallmark feature of predictive representations is that they allow an agent
to adapt quickly to changes in the environment that keep its cached predic-
tions relevant, but not to changes that require updating them. In particu-
lar, an agent equipped with the SR (see section 2.3) should adapt quickly to
changes in the reward structure (R) of the environment but not to changes in
the transition structure (T). Since the earlier studies on outcome revaluation
effectively only manipulated reward structure, both model-based control
and the SR could account for them, leaving open the question of whether
outcome revaluation effects could be fully explained by the SR instead.

This question was addressed in a study by Momennejad et al. (2017),
which examined how changes in either the reward structure or the transi-
tion structure experienced by human participants affect their subsequent
choices. The authors used a two-step task consisting of three phases: a
learning phase, a relearning (or revaluation) phase, and a test phase (see
Figure 9A). During the learning phase, participants were presented with
two distinct two-step sequences of stimuli and rewards corresponding to
two distinct trajectories through state space. The first trajectory terminated
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Figure 9: Predictive representations in cognitive science. (A) Revaluation
paradigm and predictions from Momennejad et al. (2017, sec. 6.1). (B) Multitask
learning paradigm from Tomov et al. (2021, sec. 6.2). A person is trained on tasks
where they are either hungry (w1

train = [1, 0, 0]) or groggy (w2
train = [0, 1, 0]), and

then tested on a task in which they are hungry, groggy, and looking to have fun
(wnew = [1, 1, 1]). (C) Context-dependent Bayesian SR from Geerts et al. (2024,
sec. 6.3). z, context. M, SR matrix associated with each context. sCRP, sticky
Chinese restaurant process. LDS, linear-gaussian dynamical system. (D) Spatial
navigation paradigm from de Cothi et al. (2022, sec. 6.4). (E) TCM-SR: Using the
temporal context model (TCM) to learn the SR for decision making (Zhou et al.,
2023, sec. 6.5). M, SR matrix. c, context vector. s, state and/or item. SR, successor
representation.

with high reward (s1 → s3 → s5 $10), while the second trajectory termi-
nated with a low reward (s2 → s4 → s6 $1), leading participants to prefer
the first one over the second one.

During the revaluation phase, participants had to relearn the second
half of each trajectory. Importantly, the structure of the trajectories changed
differently depending on the experimental condition. In the reward
revaluation condition, the transitions between states remained unchanged,
but the rewards of the two terminal states swapped (s3 → s5 $1; s4 → s6

$10). In contrast, in the transition revaluation condition, the rewards re-
mained the same, but the transitions to the terminal states swapped (s3 → s6

$1; s4 → s5 $10).
Finally, in the test phase, participants were asked to choose between the

two initial states of the two trajectories (s1 and s2). Note that under both
revaluation conditions, participants should now prefer the initial state of
the second trajectory (s2) as it now leads to the higher reward.
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Unlike previous revaluation studies, this design clearly disambiguates
between the predictions of model-free, model-based, and SR learners. Since
the initial states (s1 and s2) never appear during the revaluation phase, a
pure model-free learner would not update the cached values associated
with those states and would still prefer the initial state of the first trajec-
tory (s1). On the other hand, a pure model-based learner would update its
reward (R̂) or transition (T̂) estimates during the corresponding revaluation
phase, allowing it to simulate the new outcomes from each initial state and
make the optimal choice (s2) during the test phase. Critically, both model-
free and model-based learners (and any hybrid between them, such as a
convex combination of their outputs, as in Daw et al., 2011) would exhibit
the same preferences during the test phase in both revaluation conditions.

In contrast, an SR learner would show differential responding in the test
phase depending on the revaluation condition, adapting and choosing op-
timally after reward revaluation but not after transition revaluation. Specif-
ically, during the learning phase, an SR learner would learn the successor
states for each initial state (the SR itself, i.e., s1 → s5; s2 → s6). In the re-
ward revaluation condition, it would then update its reward estimates (R̂)
for the terminal states (s5 $1; s6 $10) during the revaluation phase, much like
the model-based learner. Then, during the test phase, it would combine the
updated reward estimates with the SR to compute the updated values of
the initial states (s1 → s5 $1; s2 → s6 $10), allowing it to choose the better
one (s2). In contrast, in the transition revaluation condition, the SR learner
would not have an opportunity to update the SR of the initial states (s1 and
s2) since they are never presented during the revaluation phase, much like
the model-free learner. Then, during the test phase, it would combine the
unchanged reward estimates with its old but now incorrect SR to produce
incorrect estimates for the initial states (s1 → s5 $10; s2 → s6 $1) and choose
the worse one (s1).

The pattern of human responses showed evidence of both model-based
and SR learning: participants were sensitive to both reward and transition
revaluations, consistent with model-based learning, but they performed
significantly better after reward revaluations, consistent with SR learning.
To rule out the possibility that this effect can be attributed to pure model-
based learning with different learning rates for reward (R̂) versus transition
(T̂) estimates, the researchers extended this Pavlovian design to an instru-
mental design in which participants’ choices (i.e., their policy π) altered the
trajectories they experienced. Importantly, this would correspondingly alter
the learned SR: unrewarding states would be less likely under a good policy
and hence not be prominent (or not appear at all) in the SR for that policy.
Such states could thus get overlooked by an SR learner if they suddenly
became rewarding. This subtle kind of reward revaluation (dubbed policy
revaluation by the researchers) also relies on changes in the reward structure
R, but induces predictions similar to the transition revaluation condition: SR
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learners would not adapt quickly, while model-based learners would adapt
just as quickly as in the regular reward revaluation condition.

Human responses on the test phase after policy revaluation were sim-
ilar to responses after transition revaluation but significantly worse than
responses after reward revaluation, thus ruling out a model-based strategy
with different learning rates for R̂ and T̂. Overall, the authors interpreted
their results as evidence of a hybrid model-based-SR strategy, suggesting
that the human brain can adapt to changes in the environment by both up-
dating its internal model of the world and by learning and leveraging its
cached predictive representations (see also Kahn & Daw, 2023, for addi-
tional human behavioral data leading to similar conclusions).

6.2 Multitask Learning. In the previous section, we saw that humans
can adapt quickly to changes in the reward structure of the environment (re-
ward revaluation), as predicted by the SR (Momennejad et al., 2017). How-
ever, that theoretical account alone does not fully explain how the brain
can take advantage of the SR to make adaptive choices. Here we take this
idea further and propose that humans learn successor features (SFs; see
section 2.5) for different tasks and use something like the GPI algorithm
(see section 2.5.1) to generalize across tasks with different reward functions
(Barreto et al., 2017, 2018, 2020).

In Tomov et al. (2021), participants were presented with different two-
step tasks that shared the same transition structure but had different reward
functions determined by the reward weights w (see Figure 9B). Each state s
was associated with a different set of features φ(s), which were valued dif-
ferently depending on the reward weights w for a particular task. On each
training trial, participants were first shown the weight vector wtrain for the
current trial and then asked to navigate the environment in order to max-
imize reward. At the end of the experiment, participants were presented
with a single test trial on a novel task wnew.

The main dependent measure was participant behavior on the test
task, which was designed (along with the training tasks, state features,
and transitions) to distinguish among several possible generalization
strategies. Across several experiments, Tomov et al. (2021) found that
participant behavior was consistent with SF and GPI. In particular, on
the first (and only) test trial, participants tended to prefer the training
policy that performed better on the new task, even when this was not the
optimal policy. This “policy reuse” is a key behavioral signature of GPI.
This effect could not be explained by model-based or model-free accounts.
Their results suggest that humans rely on predictive representations from
previously encountered tasks to choose promising actions on novel tasks.

6.3 Associative Learning. RL provides a normative account of asso-
ciative learning, explaining how and why agents ought to acquire long-
term reward predictions based on their experience. It also provides a
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descriptive account of a myriad of phenomena in the associative learning
literature (Sutton & Barto, 1990; Niv, 2009; Ludvig et al., 2012). Two recent
ideas have added nuance to this story:

• Bayesian learning: Animals represent and use uncertainty in their
estimates.

• Context-dependent learning: Animals partition the environment into
separate contexts and maintain separate estimates for each context.

We examine each idea in turn and then explore how they can be com-
bined with the SR (see section 2.3). In brief, the key idea is that animals
learn a probability distribution over context-dependent predictive repre-
sentations.

6.3.1 Bayesian RL. While standard RL algorithms (see section 2.2) learn
point estimates of different unknown quantities like the transition function
(T̂) or the value function (V̂), Bayesian RL posits that agents treat such un-
known quantities as random variables and represent beliefs about them as
probability distributions.

Generally Bayesian learners assume a generative process of the environ-
ment according to which hidden variables give rise to observable data. The
hidden variables can be inferred by inverting the generative process using
Bayes’s rule. In one example of Bayesian value learning (Gershman, 2015),
the agent assumes that the expected reward R(s, w) is a linear combination
of the observable state features φ(s),9

R(s, w) = φ (s)	 w (6.1)

where the hidden weights w are assumed to evolve over time according to
the following dynamical equations:

w0 ∼ N (0,�0), (6.2)

wt ∼ N (wt−1, qI), (6.3)

rt ∼ N (R(st, wt ), σ 2
R ). (6.4)

In effect, this means that each feature (or stimulus dimension) is assigned
a certain reward weight. The weights are initialized randomly around zero
(with prior covariance �0) and evolve according to a random walk (with
volatility governed by the transition noise variance q). Observed rewards
are given by the linear model (see equation 6.1) plus zero-mean gaussian
noise with variance σ 2

R.

9
Note that the linear reward model is the same as assumed in much of the SF work

reviewed above (see equation 2.29).
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This formulation corresponds to a linear-gaussian dynamical system
(LDS). The posterior distribution over weights given the observation his-
tory Ht = (s1:t, r1:t ) follows from Bayes’s rule:

p(wt |Ht ) = p(Ht |wt )p(wt )
p(Ht )

= N (wt; ŵt,�t ). (6.5)

The posterior mean ŵt and covariance �t can be computed recursively in
closed form using the Kalman filtering equations:

ŵt = ŵt−1 + ktδt, (6.6)

�t = �t−1 + qI − λtkk	
t , (6.7)

where

• δt = rt − φ(st )	ŵt is the reward prediction error.
• λt = φ(st )	(�t + qI)φ(st ) + σ 2

R is the residual variance.
• kt = (�t + qI)φ(s)/λ is the Kalman gain.

This learning algorithm generalizes the seminal Rescorla-Wagner model of
associative learning (Rescorla & Wagner, 1972), and its update rule bears
resemblance to the error-driven TD update (see equation 2.11). However,
there are a few notable distinctions from its non-Bayesian counterparts:

• Uncertainty-modulated updating: The learning rate corresponds to
the Kalman gain kt , which increases with posterior uncertainty (the
diagonals of the posterior covariance, �t).

• Nonlocal updating: The update is multivariate, affecting the weights
of all features simultaneously according to kt . This means that
weights of “absent” features (i.e., where φi(s) = 0) can be updated,
provided those features have nonzero covariance with observed
features.

These properties allow the Kalman filter to explain a number of phenomena
in associative learning that elude non-Bayesian accounts (Dayan & Kakade,
2000; Kruschke, 2008; Gershman, 2015). Uncertainty-modulated updating
implies that nonreinforced exposure to stimuli, or even just the passage of
time, can affect future learning. For example, in a phenomenon known as la-
tent inhibition, preexposure to a stimulus reduces uncertainty, which in turn
reduces the Kalman gain, retarding subsequent learning for that stimulus.
Nonlocal updating implies that learning could occur even for unobserved
stimuli if they covary with observed stimuli according to �t . For example, in
a phenomenon known as backward blocking, reinforcing two stimuli simulta-
neously (a compound stimulus, φ(s) = [1, 1]) and subsequently reinforcing
only one of the stimuli (φ(s′) = [1, 0]) reduces reward expectation for the
absent stimulus (φ(s′′) = [0, 1]) due to the learned negative covariance be-
tween the two reward weights (�1,2 < 0).
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Kalman filtering can also be extended to accommodate long-term re-
ward expectations in an algorithm known as Kalman TD (Geist & Pietquin,
2010) by replacing the state features φ(s) with their discounted temporal
difference:

ht = φ(st ) − γφ(st+1). (6.8)

This recovers the Kalman filter model described above when the dis-
count factor γ is set to 0. Importantly, this model provides a link between
the Bayesian approach to associative learning and model-free reinforce-
ment learning algorithms; we exploit this link below when we discuss
Bayesian updating of beliefs about predictive representations. Gershman
(2015) showed that Kalman TD can explain a range of associative learning
phenomena that are difficult to explain by Bayesian myopic (γ = 0) models
and nonmyopic (γ > 0) non-Bayesian models.

6.3.2 Context-Dependent Learning. In addition to accounting for uncer-
tainty in their estimates, animals have been shown to learn different
estimates in different contexts (Redish et al., 2007). This kind of context-
dependent learning can also be cast in a Bayesian framework (Courville
et al., 2006; Gershman et al., 2010) by assuming that the environment is
carved into separate contexts according to a hypothetical generative pro-
cess. One possible formalization is the Chinese restaurant process (CRP), in
which each observation is conditioned on a hidden context zt that is cur-
rently active and evolves according to

P(zt = k | z1:t−1) ∝
{

Nk if k is a previously sampled context

α otherwise
(6.9)

where Nk = ∑t−1
i=1 I[zi = k] is the number of previous time steps assigned to

context k and α ≥ 0 is a concentration parameter, which can be understood
as controlling the effective number of contexts.10

If each context is assigned its own probability distribution over observa-
tions, then inferring a given context k is driven by two factors:

• How likely is the current observation under context k?
• How likely is context k given the previous context assignments z1:t−1

(see equation 6.9)?

In particular, a given context is more likely to be inferred if the current ob-
servations are more likely under its observation distribution and/or if it has
been inferred more frequently in the past (i.e., if past observations have also
been consistent with its observation distribution). Conversely, if the current

10
Under the CRP, the expected number of contexts after t time steps is α log t.
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observations are unlikely under any previously encountered context, a new
context is induced with its own observation distribution.

This formulation has accounted for a number of phenomena in the ani-
mal learning literature (Gershman et al., 2010). For example, it explains why
associations that have been extinguished sometimes reappear when the an-
imal is returned to the context in which the association was first learned, a
phenomenon known as renewal. It also provides an explanation of why the
latent inhibition effect is attenuated if preexposure to a stimulus occurs in
one context and reinforcement occurs in a different context.

Recently, a similar formulation has been used to explain variability in
the way hippocampal place cells change their firing patterns in response to
changes in contextual cues, a phenomenon known as remapping (Sanders
et al., 2020). On this view, the hippocampus maintains a separate cognitive
map of the environment for each context, and hippocampal remapping re-
flects inferences about the current context.

6.3.3 Bayesian Learning of Context-Dependent Predictive Maps. As dis-
cussed in section 5.2, Stachenfeld et al. (2017) showed that many aspects of
hippocampal place cell firing patterns are consistent with the SR, suggest-
ing that the hippocampus encodes a predictive map of the environment. In
this light, the view that the hippocampus learns different maps for differ-
ent contexts (Sanders et al., 2020) naturally points to the idea of a context-
dependent predictive map.

This idea was formalized by Geerts et al. (2024) in a model that combines
SFs (see section 2.5) with Bayesian learning and context-dependent learn-
ing. Their model learns a separate predictive map of the environment for
each context, where each map takes the form of a probability distribution
over SFs (see Figure 9C). The generative model assumes that the SF is given
by a linear combination of state features:

ψ j,t (s) = φ(s)	m j,t, (6.10)

where m j is a vector of weights for predicting successor feature j. Analo-
gous to the Kalman TD model described above, Geerts et al. assume that the
weight vectors for all features evolve over time according to the following
LDS:

m j,0 ∼ N (μ0,�0), (6.11)

m j,t ∼ N (m j,t−1, qI), (6.12)

φ j,t (st ) ∼ N (h	
t m j,t−1, σ

2
φ ). (6.13)

This means that the weight vector is initialized randomly (with prior
mean μ0 and variance �0) and evolves randomly according to a random
walk (with transition noise variance q). Observed features φ(s) are noisy
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differences in the SFs of successive states (with observation noise variance
σ 2

φ ). As in Kalman TD, the posterior over the weight vector for feature j is
also gaussian with mean m̂ j and variance �, which can be computed using
Kalman filtering equations essentially the same as those given above (see
equations 6.6 and 6.7 in section 6.3.1).

The authors generalize this to multiple contexts using a switching
LDS: each context has a corresponding LDS and SF weights. The contexts
themselves change over time based on a “sticky” version of the Chinese
restaurant process, which additionally favors remaining in the most recent
context:

P(zt = k | z1:t−1) ∝{
Nk + νI[zt−1 = k] if k is a previously sampled context

α otherwise
, (6.14)

where ν ≥ 0 is the “stickiness” parameter dictating how likely it is to remain
in the same context.

Thus, a given context k is more likely to be inferred if:

• The current observations are consistent with its SFs (see equation
6.13).

• It was encountered frequently in the past (driven by the Nk term in
equation 6.14).

• It was encountered recently (driven by the I[zt−1 = k] term in equa-
tion 6.14).

Conversely, a new context is more likely to be inferred if observations are
inconsistent with the current SFs (i.e., when there are large SF prediction
errors).

The authors show that this model can account for a number of puzzling
effects in the animal learning literature that pose problems for both point
estimation (TD learning) of the SR/SF (see equations 2.17 and 2.18 in sec-
tion 2.3) and Bayesian RL (see equations 6.6 and 6.7 in section 6.3.1). One
example is the opposing effect that preexposure to a context can have on
learning. Brief exposure to a context can facilitate learning (context preex-
posure facilitation), while prolonged exposure can inhibit learning (latent
inhibition; Kiernan & Westbrook, 1993). Context preexposure facilitation
by itself can be accounted for by TD learning of the SR alone (Stachen-
feld et al., 2017): during preexposure, the animal learns a predictive rep-
resentation that facilitates propagation of newly learned values. Latent
inhibition by itself can be accounted for by Bayesian RL alone (Gershman,
2015), as discussed previously: prolonged exposure reduces value uncer-
tainty, in turn reducing the Kalman gain kt (the effective learning rate)
and inhibiting learning of new values. Kalman learning of SFs combines
these two processes and can thus resolve the apparent paradox: initially, the
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animal learns a predictive representation of the context, which facilitates
learning, whereas after prolonged exposure, this effect is offset by a reduc-
tion in value uncertainty, which inhibits learning.

Another puzzling effect is the partial transition revaluation observed in
Momennejad et al. (2017) and discussed in section 6.1, which cannot be ac-
counted for by TD learning of the SR. This led Momennejad et al. to propose
a hybrid model-based-SR strategy that relies on offline simulations. Kalman
TD offers a more parsimonious account based on nonlocal updating that
does not appeal to model-based simulations. In particular, the covariance
matrix �t learned during the learning phase captures the relationship be-
tween the initial states (s1 and s2) and subsequent states (s3 and s4). Up-
dating the transitions from those subsequent states (s3 → s6 and s4 → s5)
during the transition revaluation phase therefore also updates the SR for
the initial states (s1 and s2), even though they are not encountered during
the revaluation phase.

Nonlocal updating can similarly explain reward devaluation of precon-
ditioned stimuli, a hallmark of model-based learning (Hart et al., 2020). This
is similar to reward devaluation, discussed in section 6.1, except with an
additional preconditioning phase during which an association is learned
between two neutral stimuli (e.g., light → tone). During the subsequent
conditioning phase, the second stimulus is associated with a rewarding out-
come (e.g., tone → food), which is then devalued (e.g., by inducing taste
aversion) during the devaluation phase. Finally, the animal is tested on the
first neutral stimulus (e.g., light). Note that since the first stimulus is never
present during the conditioning phase, TD learning would not acquire an
association between the first stimulus and the reward and would thus not
exhibit sensitivity to reward devaluation (Gardner et al., 2018). In contrast,
during the preconditioning phase, Kalman TD learns that the two stimuli
covary, allowing it to update the SF for both stimuli during the condition-
ing phase and consequently propagate the updated value to both stimuli
during the devaluation phase.

Note that the phenomena so far can be explained without appealing to
context-dependent learning (see section 6.3.2), since the experiments take
place in the same context. Context-dependent Kalman TD can addition-
ally explain a number of intriguing phenomena when multiple contexts are
introduced.

One such phenomenon is the context specificity of learned associations
(Winocur et al., 2009). In this paradigm, an animal learns an association (e.g.,
tone → shock) in one context (e.g., context A) and is then tested in the same
context or in another context (e.g., context B). The amount of generalization
of the association across contexts was found to depend on elapsed time: if
testing occurs soon after training, the animal responds only in the training
context (A), indicating context specificity. However, if testing occurs after
a delay, the animal responds equally in both contexts A and B, indicating
contextual generalization. Even more intriguing, this effect is reversed if
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the animal is briefly reintroduced to the training context (A) before testing,
in which case responding is once again context specific—a hippocampus-
dependent reminder effect.

The context-dependent model readily accounts for these effects. Shortly
after training, the uncertainty of the SR assigned to context A is low (i.e.,
the animal is confident in its predictive representation of context A). Intro-
duction to context B therefore results in a large prediction error, leading the
animal to (correctly) infer a new context with a new SR, leading to context-
specific responding. However, as more time elapses, the uncertainty of the
SR assigned to context A gradually increases (i.e., the animal becomes less
confident in its predictive representation of context A, a kind of forgetting).
Introduction to context B then results in a smaller prediction error, making
it likely that the new observations are also assigned to context A, leading
to generalization across contexts. Brief exposure to context A reverses this
effect by reducing the uncertainty of the SR assigned to context A (i.e., the
animal’s confidence in its predictive representation of context A is restored,
a kind of remembering), leading once again to context-specific responding.

Recall that the duration of context preexposure has opposing effects on
learning, initially facilitating but subsequently inhibiting learning (Kiernan
& Westbrook, 1993). But what if the animal is tested in a different con-
text? In a follow-up experiment, Kiernan and Westbrook (1993) showed that
longer preexposure to the training context leads to less responding in the
test context, indicating that the learned association is not generalized. That
is, longer context preexposure has a monotonic inhibitory effect on general-
ization across contexts. The context-dependent model can account for this
with the same mechanism that accounts for context preexposure facilita-
tion: longer preexposure to the training context reduces the uncertainty of
its predictive estimate, leading to greater prediction errors when presented
with the text context and increasing the probability that the animal will infer
a new context, leading to context-specific responding.

Overall, the results of Geerts et al. (2024) suggest that rather than encod-
ing a single monolithic predictive map of the environment, the hippocam-
pus encodes multiple separate predictive maps, each associated with its
own context. Both the context and the predictive map are inferred using
Bayesian inference: learning of the predictive map is modulated by uncer-
tainty and supports nonlocal updating. A new context is inferred when the
current predictive map fails to account for current observations.

6.4 Spatial Navigation. A rich body of work points to the hippocam-
pus as encoding a kind of cognitive map of the environment that mam-
mals rely on for navigation in physical and abstract state spaces (O’Keefe &
Dostrovsky, 1971; O’Keefe & Nadel, 1978). As we discussed in the previous
section and in section 5.2, this cognitive map can be usefully interpreted
as a predictive map in which states predict future expected states, consis-
tent with the SR (see section 2.3; Stachenfeld et al., 2017). Yet despite many
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studies of navigation in humans and rodents—key model species used to
study spatial navigation (Epstein et al., 2017; Ekstrom & Ranganath, 2018;
Ekstrom et al., 2018; Gahnstrom & Spiers, 2020; Nyberg et al., 2022; Spiers
& Barry, 2015)—until recently there was no direct comparison of human
and rodent navigation in a homologous task. This left open the question of
whether spatial navigation across mammalian species relies on an evolu-
tionarily conserved strategy supported by such a predictive map.

A recent study by de Cothi et al. (2022) filled this gap by designing a
homologous navigation task for humans and rats. They devised a config-
urable open-field maze that could be reconfigured between trials, allowing
experimenters to assess a hallmark aspect of spatial navigation: the ability
to efficiently find detours and shortcuts. The maze consisted of a 10-by-10
grid in which squares could be blocked off by the experimenters. The maze
was instantiated in a physical environment for rats and in a virtual reality
environment for humans.

On each trial, the participant was placed at a starting location and had to
navigate to a goal location to receive a reward (see Figure 9D). The starting
location varied across trials, while the goal remained hidden at a fixed lo-
cation throughout the experiment. Keeping the goal location unobservable
ensured that participants could not rely on simple visual heuristics (e.g.,
proximity to the goal). At the same time, keeping the goal location fixed
ensured that once it is identified, the key problem becomes navigating to it
rather than rediscovering it. During the training phase of the experiment,
all squares of the grid were accessible, allowing participants to learn an in-
ternal map of the environment. During the test phase, participants were
sequentially presented with 25 different maze configurations in which var-
ious sections of the maze were blocked off. Participants completed 10 trials
of each configuration before moving on to the next.

Using this task, the authors compared human and rat navigation with
three types of RL algorithms:

• Model-free agent (section 2.2). No internal map of the environment;
optimal policy is based on state-action value function Q, which is
learned from experience, specifically, using Q-learning (see equa-
tion 2.11) with eligibility traces.

• Model-based agent (section 2.2). Full internal map of the environment
(transition structure T and reward function R) is learned from experi-
ence; optimal policy is computed using tree search at decision time—
specifically, using A* search.

• SR agent (section 2.3). Predictive map of the environment (SR ma-
trix M and reward function R) is learned from experience; optimal
policy is computed by combining SR and reward function (see equa-
tion 2.19).

The key question that the authors sought to answer was which RL strategy
best explains human and rat navigation across the novel test configurations.
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Across a wide range of analyses, the authors observed a consistent trend:
both human and rodent behavior was most consistent with the SR agent.
Humans also showed some similarity to the model-based agent, but neither
species was consistent with the model-free agent.

First, the authors simulated each RL agent generatively on the same tri-
als as the participants: they let the RL agent navigate and solve each trial as
a kind of simulated participant, learning from its own experience along the
way. These closed-loop11 simulations show what overall participant behav-
ior would look like according to each RL strategy. This revealed that:

• Model-free agents struggle on new maze configurations due to the
slow learning of the Q-function, which takes many trials to propagate
values from the goal location to possible starting locations.

• Model-based agents generalize quickly to new maze configurations,
since local updates to the transition structure T can be immediately
reflected in the tree search algorithm.

• SR agents generalize faster than model free but more slowly than
model-based agents, since updates to the SR matrix M reach farther
than updates to the Q-function, but still require several trials to prop-
agate all the way to the possible starting locations.

Second, the authors clamped each RL agent to participant behavior—
is, they fed the agent the same sequence of states and actions experienced
by a given participant. These open-loop simulations show what the partic-
ipant would do at each step if they were following a given RL strategy.12

By matching these predictions with participant behavior using maximum
likelihood estimation of model parameters, the authors quantified how con-
sistent step-by-step participant behavior is with each RL strategy. For both
humans and rats, this analysis revealed the greatest similarity (i.e., highest
likelihood) with the SR agent, followed by the model-based agent, with the
model-free agent showing the least similarity (i.e., lowest likelihood).

Third, the authors combined the above approaches by first training
each fitted RL agent with the state-action sequences observed by a par-
ticipant on several maze configurations and then simulating it genera-
tively on another configuration. This hybrid open-loop training (on past
configurations)/closed-loop evaluation (on a new configuration) provides
a more global view than the step-by-step analysis above by allowing com-
parison of predicted and participant trajectories rather than individual
actions. This led to several findings:

11
We refer to the them as “closed-loop” since, at each step, the output of the RL agent

(its action) is fed back to change its position on the grid, influencing the agent’s input at
the following step, and so on.

12
We refer to them as “open-loop” since at each step, the output of the RL agent has

no effect on its subsequent inputs or outputs.
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• Configurations that were challenging for the SR agent were also chal-
lenging for biological agents, and vice versa. This pattern was less
consistent for model-based and model-free agents.

• Overall directedness and direction of participant trajectories (quan-
tified by linear and angular diffusivity) were most similar to SR
trajectories.

• The step-by-step distance between participant and SR trajectories
was consistently lower compared to model-based and model-free
trajectories.

All of these analyses show that the SR agent best explains both human
and rat behavior. Overall, the results of de Cothi et al. (2022) indicate that
spatial navigation across mammalian species relies on a predictive map that
is updated from experience in response to changes in the environment.

6.5 Memory. The hippocampus and the adjacent medial temporal
lobe structures are also involved in another high-level cognitive function:
episodic memory (Ranganath, 2010). In this section, we review an influen-
tial model of episodic memory, the temporal context model (TCM; Howard
& Kahana, 2002), through the lens of RL, and show that it can be par-
tially understood as an estimator for the SR (see section 2.3; Gershman
et al., 2012). We then discuss how this property can be used in a power-
ful decision-making algorithm that bridges episodic memory and reinforce-
ment learning systems (Zhou et al., 2023).

6.5.1 The Temporal Context Model. TCM is an influential model of mem-
ory encoding and retrieval originally designed to account for a number of
phenomena in free recall experiments (Howard & Kahana, 2002). In these
experiments, participants are asked to study a list of items and then recall
as many of them as they can, in any order. Experimenters observed that re-
call order is often not, in fact, arbitrary: participants show better recall for
recently studied items (the recency effect) and tend to recall adjacent items
in the list one after the other (the contiguity effect).

TCM accounts for these phenomena by positing that the brain maintains
a temporal context: a slowly drifting internal representation of recent expe-
rience that gets bound to specific experiences (memories) during encoding
and can serve as a cue to bring those experiences to mind during retrieval.
When participants begin recalling the studied items, the temporal context
is most similar to the context associated with recently studied items (due
to the slow drift), which is why they are recalled better (the recency effect).
Recalling items reactivates the context associated with those items, which
is similar to the context for adjacent items (again, due to the slow drift),
which is why they tend to be recalled soon after (the contiguity effect). Neu-
ral evidence for drifting context comes from the finding that lingering brain
activity patterns of recent stimuli predicted whether past and present stim-
uli are later recalled together (Chan et al., 2017). Human brain recordings
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have also provided evidence for temporal context reactivation during recall
(Gershman et al., 2013; Folkerts et al., 2018).

Temporal context can be formalized as weighted average of recently en-
countered stimulus vectors:

ct+1 = (1 − ω)ct + ωφ(st ), (6.15)

where ct is the current context vector; φ(st ) is the feature vector for the cur-
rent stimulus st , which could correspond to a study item (in an episodic
memory setting) or a state (in a decision making setting); and the constant
ω determines the drift rate—whether the context evolves slowly (low ω) or
quickly (high ω).

Stimuli and contexts are bound using an association matrix M̂ which
gets updated using outer-product Hebbian learning: when a new stimulus
is presented, its associations with previous stimuli are strengthened in pro-
portion to how active they are in the current context:

�M̂(i, j) ∝ φi(st )ci,t . (6.16)

In early studies of this model, stimuli were encoded using one-hot vectors,
φi(s) = I[s = i], although more flexible feature representations have been
studied (Socher et al., 2009; Howard et al., 2011).

6.5.2 TCM as an Estimator for the SR. Note the similarity between the
TCM learning rule (equation 6.16) and the SR TD learning rule (equa-
tion 2.17 in section 2.3). There are two main distinctions:

• The TCM update (equation 6.16) is modulated by the context vector c,
which is absent from the SR TD update (equation 2.17 in section 2.3).

• The Hebbian update in TCM lacks the prediction error terms from
the SR TD error δM( j) (equation 2.18 in section 2.3).

The first distinction can be removed by setting a maximum drift rate of ω =
1 in equation 6.15, which ensures that the context is always updated to the
latest stimulus vector, ct+1 = φ(st ). For the one-hot encoding, this means
that only M̂(st−1, j) will be updated in the TCM update, since ci,t = I[st−1 =
i] in equation 6.16), just as in the SR TD update (equation 2.17). Conversely,
introducing a context term in the SR TD update (equation 2.17) results in
a generalization of TD learning using an eligibility trace (Sutton & Barto,
2018), a running average of recently visited states. This is mathematically
equivalent to temporal context (equation 6.15), and can sometimes lead to
faster convergence. In this way, the TCM learning rule is a generalization
of the vanilla SR TD learning rule that additionally incorporates eligibility
traces.

The second distinction suggests a way to, in turn, generalize the TCM
update rule by replacing the Hebbian term with the prediction error term
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δM( j) (equation 2.18) from the SR TD update. This leads to the following
revised update equation for TCM:

�M̂(i, j) ∝ δM( j)ci,t, (6.17)

where δM( j) is the same as in equation 2.18. Gershman et al. (2012) showed
that this new variant of TCM can be understood as directly estimating the
SR using TD learning, with temporal context serving as an eligibility trace.
It differs from the original version of TCM in two keys ways. First, learn-
ing is error driven rather than purely Hebbian, which means that associ-
ation strength only grows if there is a discrepancy between predicted and
observed stimuli (see DuBrow et al., 2017, for a discussion of empirical ev-
idence). Second, associations are additionally learned between the context
and future expected stimuli, not just the present stimulus.

This new interpretation of TCM posits that the role of temporal context
is to learn predictions of future stimuli rather than to merely form associ-
ations. This makes several distinct predictions from the original version of
TCM, one of which is the context repetition effect: repeating the context in
which a stimulus was observed should strengthen memory for that stim-
ulus, even if the stimulus itself was not repeated. This prediction was val-
idated in a study by Smith et al. (2013). The authors showed participants
triplets of stimuli (images in one experiment and words in another exper-
iment), with the first two stimuli in each triplet serving as context for the
third stimulus. Participants were then presented with an item-recognition
test in which they had to indicate whether different stimuli are either “old”
or “new.” Memory performance was quantified as the proportion of test
items correctly recognized as old. The key finding was that memory was
better for stimuli whose context was presented repeatedly, even if the stim-
uli themselves were only presented once. This held for different modalities
(images and words) and did not occur when context was generally not pre-
dictive of stimuli. These findings (see also Manns et al., 2015) substantiate
the predicted context repetition effect and lend credence to idea that TCM
learns predictions rather than mere associations.

6.5.3 Combining TCM and the SR for Decision Making. The theoretical
links between TCM (see section 6.5.1) and the SR (see section 2.3) point
to a broader role for episodic memory in RL. Previous studies have impli-
cated the hippocampus in prediction and imagination (Buckner, 2010), as
well as replay of salient events (Momennejad et al., 2018), consistent with
some form of model-based RL or a successor model (SM; see section 2.4).
More generally, episodic memory is thought to support decision making by
providing the ingredients for simulating possible futures (Schacter et al.,
2015). This idea is corroborated by studies of patients with episodic mem-
ory deficits, who also tend to show deficits on decision-making tasks (Gupta
et al., 2009; Gutbrod et al., 2006; Bakkour et al., 2019). A related body of
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work focuses on decision-by-sampling algorithms, according to which hu-
mans approximate action values by sampling from similar past experiences
stored in memory (Stewart et al., 2006; Plonsky et al., 2015; Bornstein et al.,
2017; Lieder et al., 2018; Bhui & Gershman, 2018).

These loosely connected ideas were knitted together in a theoretical pro-
posal by Zhou et al. (2023) that builds on the links between TCM and the SR,
showing precisely how a predictive version of TCM can support adaptive
decision making. Their model incorporates two key ideas (see Figure 9E):

• During encoding (see Figure 9E, top), incoming feature vectors φ(st )
update a slowly drifting context ct (equation 6.15). This context vector
serves as an eligibility trace in a TD update rule (equation 6.17) that
learns the SR estimate M̂ (Gershman et al., 2012).

• During retrieval (i.e., at decision time; see Figure 9E, middle and bot-
tom), possible future stimuli x are sampled for each action using a
tree-search algorithm that uses the SR as a world model, effectively
turning it into a SM (see section 2.4): p(s̃τ ) ∝ M̂cτ , where τ indexes
time steps at retrieval and s̃0 corresponds to the initial state of the re-
trieval process (the query stimulus, defined as the root of the tree).
Retrieval unfolds by recursively sampling states from this process.
The corresponding rewards then are averaged to compute a Monte
Carlo value estimate for each action.

During the tree search, the context vector cτ can be updated with the sam-
pled feature vector φ(st ) to varying degrees, dictated by the drift rate ω

(see equation 6.15). This spans a continuum between updating and retrieval
regimes.

At one extreme, if the drift rate during retrieval is set to its lowest value
(ω = 0), the context is never updated after being initialized with the query
stimulus (cτ = x0 = φ(s̃0)∀τ ). This results in independent and identically
distributed samples from the normalized SR (i.e., the SM). In the limit of
infinite samples, this reduces to simply computing action values by com-
bining the reward function and the SR (see equation 2.19 in section 2.3), as
discussed in sections 6.1 and 6.2. For finite samples, this produces an unbi-
ased estimator of action values. Note that this estimate is only as accurate as
the SR matrix M̂, which is itself an estimate of the true SR matrix M. Hence,
this regime inherits all the pros and cons of using the SR (see sections 2.3
and 6.1): it can be used to efficiently compute action values, and it can adapt
quickly to changes in the reward structure R but not the transition structure
T of the environment.

At the other extreme, if the drift rate during retrieval is set to its high-
est value (ω = 1), the context is always updated to the latest sampled stim-
ulus (cτ = φ(s̃τ )). If the discount factor is minimal, γ = 0, the SR reduces
to the one-step transition matrix (i.e., M = T) and the sampled stimuli sτ

are no longer independent and identically distributed but instead form a
trajectory through state space that follows the transition structure T and
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corresponds to a single Monte Carlo rollout. Averaging rewards from such
Monte Carlo rollouts also produces an unbiased estimator of value (Sutton
& Barto, 2018). This regime thus corresponds to a fully model-based algo-
rithm (see section 2.2) and inherits all the pros and cons of that approach:
it takes longer to compute action values (since trajectories need to be fully
rolled out to produce unbiased estimates, requiring more samples), but it
can adapt quickly to changes in both the reward structure R and the transi-
tion structure T of the environment.

Between these extremes lies a continuum (0 < ω < 1) that trades off be-
tween a sampling approximation of the SR (ω → 0) and model-based Monte
Carlo rollouts (ω → 1). Indeed, results from free recall experiments are con-
sistent with such an intermediate regime (Howard & Kahana, 2002), indi-
cating that context is partially updated during retrieval. This also raises the
intriguing possibility that the brain navigates this continuum by dynam-
ically adjusting the drift rate in a way that balances the pros and cons of
both regimes, similarly to the way in which the brain arbitrates between
model-based and model-free RL systems (Kool et al., 2018).

The authors also demonstrate how emotionally salient stimuli, such as
high rewards, can modulate learning by producing a higher learning rate
for the SR update (see equation 6.17). This introduces a kind of bias-variance
trade-off: the resulting SR skews toward stimuli that were previously re-
warded, which could speed up convergence (lower variance) but also in-
duce potentially inaccurate action values (higher bias). Finally, the authors
show how initiating the tree search with a retrieval context c0 that is asso-
ciated with but different from the query stimulus feature vector φ(s̃0) can
lead to bidirectional retrieval. This is consistent with bidirectional recall in
human memory experiments and can be advantageous in problems where
state transitions can be bidirectional, such as spatial navigation.

In summary, the modeling and simulation results of Zhou et al. (2023)
demonstrate how a variant of TCM can be viewed as an estimator of the
SR and can serve as the basis for a flexible sampling-based decision algo-
rithm that spans the continuum between vanilla SR and fully model-based
search. This work illustrates how episodic memory can be integrated with
predictive representations to explain cognitive aspects of decision making.

7 Conclusion

The goal of this survey was to show how predictive representations can
serve as the building blocks for intelligent computation. Modern work in
AI has demonstrated the power of good representations for a variety of
downstream tasks; our contribution builds on this insight, focusing on what
makes representations useful for RL tasks. The idea that representing pre-
dictions is particularly useful has appeared in many different forms over
the past few decades, but has really blossomed only in the past few years.
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We now understand much better why predictive representations are useful,
what they can be used for, and how to learn them.
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