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Visual motion perception as online
hierarchical inference

Johannes Bill 1,2 , Samuel J. Gershman 2,3,4,5 & Jan Drugowitsch 1,3,5

Identifying the structure of motion relations in the environment is critical for
navigation, tracking, prediction, and pursuit. Yet, little is known about the
mental and neural computations that allow the visual system to infer this
structure online from a volatile stream of visual information. We propose
online hierarchical Bayesian inference as a principled solution for how the
brain might solve this complex perceptual task. We derive an online
Expectation-Maximization algorithm that explains human percepts qualita-
tively and quantitatively for a diverse set of stimuli, covering classical psy-
chophysics experiments, ambiguous motion scenes, and illusory motion
displays. We thereby identify normative explanations for the origin of human
motion structure perception and make testable predictions for future psy-
chophysics experiments. The proposed online hierarchical inference model
furthermore affords a neural network implementationwhich shares properties
with motion-sensitive cortical areas and motivates targeted experiments to
reveal the neural representations of latent structure.

Efficient behavior requires identification of structure in a continuous
stream of volatile and often ambiguous visual information. To identify
this structure, the brain exploits statistical relations in velocities of
observable features, such as the coherent motion of features com-
posing an object (Fig. 1a). Motion structure thus carries essential
information about the spatial and temporal evolution of the environ-
ment, and aids behaviors such as navigation, tracking, prediction, and
pursuit1–8. It remains, however, unclear how the visual system identifies
a scene’s underlying motion structure and exploits it to turn noisy,
unstructured, sensory impressions into meaningful motion percepts.

In recent years, Bayesian inference has provided a successful
normative perspective on many aspects of visual motion
perception9–17. Human perception of motion stimuli spatially con-
strained by an aperture is well-explained by Bayesian statistical
inference9–11,14, and neural circuits that integrate local retinal input into
neural representations of motion have been identified18–23. For the
perception of structured motion spanning multiple objects and larger
areas of the visual field, however, a comprehensive understanding is
only beginning to emerge15,24–27. While common fate, that is, the use of
motion coherence for grouping visual features into percepts of rigid

objects, received some experimental support24,28, the perception of
natural scenes requires more flexible structure representations (e.g.,
nested motion relations and non-rigid deformations) than common
fate alone. Recent theoretical work15 has introduced a representation
of tree structures for the mental organization of observed velocities
into nested hierarchies. Theory-driven experiments subsequently
demonstrated that the human visual system indeed makes use of
hierarchical structure when solving visual tasks16, and that salient
aspects of human motion structure perception can be explained by
normativemodels of Bayesian inferenceover tree structures17. Because
these studieswere restricted tomodelingmotion integration onlywith
regard to the perceptual outcome—they analyzed presented visual
scenes offline using ideal Bayesian observer models—it remained
unclear how the visual system solves the chicken-and-egg problem of
parsing (in real time) instantaneous motion in a scene while simulta-
neously inferring the scene’s underlying structure.

We address this question by formulating visualmotionperception
as online hierarchical inference in a generative model of structured
motion. The resulting continuous-timemodel is able to explain human
perception of motion stimuli covering classical psychophysics
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experiments, ambiguous motion scenes, and illusory motion displays.
The model, which relies on online Expectation-Maximization29–31,
separates inferenceof instantaneousmotion from identifying a scene’s
underlying structure by exploiting the fact that these evolve on dif-
ferent time-scales. The resulting set of interconnected differential
equations decomposes a scene’s velocities with the goal ofminimizing
prediction errors for subsequent observations. Beyond capturing
human percepts inmany psychophysics experiments qualitatively, the
model explains human motion structure classification quantitatively
with higher fidelity than a previous ideal observer-based model17.
Furthermore, the model provides a normative explanation for the
putative origin of human illusory motion perception, and yields tes-
table predictions for future psychophysics experiments.

Finally, we address how motion structure discovery could be
supported by neural circuits in the brain. Studying the neural repre-
sentations underlying motion structure perception is challenging, as
the perceived structure often has no direct physical counterpart in the
environment (e.g., the concept of aflockvelocity in Fig. 1a).Wederive a
recurrent neural network model that not only implements the pro-
posed online hierarchical inferencemodel, but sharesmany properties
with motion-sensitive middle temporal area (MT)21 and dorsal medial
superior temporal area (MSTd)19,32. The network model in turn allows
us to propose a class of stimuli for neuroscientific experiments that
make concrete predictions for neural recordings.

Results
In what follows, we first present the online model for simultaneous
hierarchical inference of instantaneous motion and of the scene’s
underlying structure. Next, we demonstrate the model’s ability to

explain human motion perception across a set of psychophysics
experiments and discuss testable predictions for future studies.
Finally, we propose a biologically realistic neural implementation of
online hierarchical inference and identify targeted experiments to
reveal neural representations of latent structure.

Online hierarchical inference in a generative model of struc-
tured motion
A structural understanding of the scene in Fig. 1a requires the observer
to decompose observed velocities of objects or their features into
what we call latent motion sources, s, that, together, compose the
scene (Fig. 1b). These latent sources might or might not have a direct
counterpart in the physical world. In Fig. 1b, for instance, each bird’s
velocity on the observer’s retina can be decomposed into the obser-
ver’s self-motion, sself, the flock’smotion, sshared, plus a smaller, animal-
specific component, sind. Here, flock motion is an abstract mental
concept that is introduced to organize perception, but doesn’t have an
immediate physical correlate. A correct decomposition leads to
motion sources that aid interpretation of the visual scene, and thus
supports behaviors such as navigation, tracking, prediction and pur-
suit. Such decomposition requires knowledge of the scene’s structure,
like the presence of a flock and which birds it encompasses (Fig. 1c).
Wrong structural assumptionsmight lead to faulty inferenceofmotion
sources, like wrongly attributing the flock’s motion in the sky to self-
motion. Thus, the challenge for an observer is to simultaneously infer
motion sources and structure online from a stream of noisy and
ambiguous visual information.

We formalized the intuition of structured motion in the gen-
erative model shown in Fig. 1d–g. The stochastic model, first
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Fig. 1 | Visual motion perception as an online hierarchical inference task.
a Scene with nested motion relations. Observed velocities reaching the observer’s
retina are perceived as a combination of self-motion, flock motion and every bird’s
individualmotion relative to theflock.b Formal decomposition of the scene’smotion
into latentmotion sources. c Tree-structured graph representation of the underlying
motion structure with nodes corresponding to latent motion sources. Self-motion
contributes in the opposite direction to retinal velocity (−1). Vertical distances
between nodes, termedmotion strengths, λ, describe the long-term average speed of
the source. Vanishing motion strength indicates that the corresponding motion
source is not present the scene.d–gGenerativemodel of structuredmotion.dGraph
for a simpler motion scene with three flocking birds and a stationary observer.

e Latent motion sources follow independent Ornstein–Uhlenbeck processes. f The
component matrix, C, composes noise-free velocities from the motion sources, such
that each velocity is the sum of all its ancestral sources. g Observed velocities are
noisy versionsof thenoise-free velocities.h Inverting thegenerativemodel according
to Bayes’ rule poses an online hierarchical inference task characterized by inter-
dependent updates of motion sources and structure. i Using an adiabatic approx-
imation, the motion sources’ posterior variances reduce to a function of the motion
strengths. Panels a–h are derived from artwork by Vladimír Čerešňák ("Migrating
geese in the spring andautumn” licensed fromDepositphotos Inc.) andGordonDylan
Johnson ("VintageBrotherAndSisterBicycle Silhouette” fromOpenclipart.org, public
domain).
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introduced in ref. 16 and formally defined in Supplementary Note 1,
accommodates fundamental principles of physics (isotropy and iner-
tia) and psychophysics (continuity of trajectories33 and slow-velocity
priors9), without making assumptions on specific object trajectories.
For example, themotion of three flocking birds viewed by a stationary
observer (motion tree in Fig. 1d) can be decomposed into four inde-
pendent motion sources—one shared (magenta) and three individual
(green, one per bird)—that evolve according to Ornstein–Uhlenbeck
processes34, generating smooth motion with changes typically occur-
ring at time scale τs (Fig. 1e). The resulting speed (absolute velocity)
distribution of each motion source is governed by an associated
motion strength, λ, such that the expected speed is proportional to λ.
The observable velocities, vt, are in turn noise-perturbed (noise mag-
nitude σobs; Fig. 1g) sums of the individualmotion sources (collected in
vector st), with the contribution of each individual motion source
specified by a different columnof the componentmatrixC (see Fig. 1f).
This formalizes the intuition that observable velocities are the sum of
their ancestral motion sources in the tree.

In thismodel, the structure of a scene is fully characterized by the
vector of motion strengths, λ = (λ1, . . , λm, . . , λM), which describe the
presence (λm > 0) or absence (λm =0) ofmotion components, as well as
their typical speed. In other words, given a reservoir of components,C,
which might have been learned to occur in visual scenes in general,
knowing λ is equivalent to knowing the motion structure of the scene.
Inferring this structure in turn becomes equivalent to inferring the
corresponding motion strengths.

An agent faces two challenges when performing inference in this
generative model (Fig. 1h). First, inference needs to be performed on
the fly (i.e., online) while sensory information arrives as an ongoing
streamofnoisy velocity observations. Second, howobservedmotion is
separated into latent motion sources, s, and motion structure, λ, is
inherently ambiguous, such that inference needs to resolve the hier-
archical inter-dependence between these two factors.We addressboth
challenges by recognizing that motion structure, λ, typically changes
more slowly than the often volatile values of motion sources, s, facil-
itating the use of an online Expectation-Maximization (EM) algorithm
to infer both. This separation of time scales yields a systemofmutually
dependent equations for updating λ and s and furthermore affords a
memory-efficient, continuous-time online formulation that is amen-
able to a neural implementation (see Methods for an outline of the
derivation, and Supplementary Note 2 for the full derivation). While
the algorithm is approximate, it nonetheless performs adequate online
hierarchical inference and closely resembles more accurate solutions,
even for deeply nested motion structures (see Supplementary Fig. 1).

Our online model computes, at any time, a posterior belief over
the latent motion sources, st, which is Gaussian with mean vector μt

and covariance matrix Σt, as well as an estimate, λt, of the underlying
structure. The dynamics of μt, Σt, and λ2t (the inference is more ele-
gantly formulated on the squared values) read:

∂tλ
2
t = � 1

τλ
λ2t +α � μ2

t + f Σðλ2t Þ
� �

+β, ð1Þ

∂tμt = � 1
τs

μt + f Σðλ2t Þ � CT ϵt with ϵt =
vt
σ2
obs

� C μt

σ2
obs

, ð2Þ

and Σt =diag f Σðλ2t Þ
h i

: ð3Þ

The coupled Eqs. (1)–(3) support the following intuition. Equation
(1) calculates a running average of the motion strengths λ2t by use of a
low-pass filter with time scale τλ. Here,⊙ denotes element-wise multi-
plication and the function f Σðλ2t Þ (Fig. 1i) estimates the variance of the
s-posterior distribution according to an adiabatic approximation (cf.
Eq. (3), see Methods). The constants α and β contribute a sparsity-

promoting prior, p(λ2), for typical values of the motion strengths (see
Methods for their full expressions). By Eq. (2), the motion source
means μt are estimated by a slightly different low-pass filter that relies
on a prediction error, ϵt, between themodel’s expected velocities,Cμt,
and those actually encountered in the input, vt (both normalized by
observation noise variance to facilitate the later network imple-
mentation). This prediction error on observable velocities is trans-
formed back to the space of latent motion sources via the transposed
component matrix CT and then, importantly, gated by element-wise
multiplication (⊙) with the variance estimates f Σðλ2t Þ. This gating
implements a credit assignment as to which motion source was the
likely cause of observed mismatches in ϵt, and thus uses the scene’s
currently inferred motion structure to modulate the observed velo-
cities’ decomposition into motion sources. For flocking birds, for
example, a simultaneous alignment in multiple birds’ velocities would
only be attributed to the shared flock velocity if such a flock had been
detected in thepast (λshared large, and λind small). Otherwise it would be
assigned to the birds’ individual motions, sind.

Together, Eqs. (1) and (2) implement a coupled process of struc-
ture discovery and motion decomposition, which distinguishes them
through different time-scales. Notably, the proposed model is not a
heuristic, but is derived directly from a normative theory of online
hierarchical inference. Next, we explored if the model can explain
prominent phenomena of human visual motion perception.

Online inference replicates human perception of classical
motion displays
To explore if the proposed online model can qualitatively replicate
human perception of established motion displays, we simulated two
classical experiments from Gunnar Johansson25 and Karl Duncker35.
These experiments belong to a class of visual stimuli which we refer to
as object-indexed experiments (Fig. 2a) because the observed velo-
cities, vt, belong to objects irrespective of their spatial locations. (A
second class, which we refer to as location-indexed experiments, will
be discussed below.)

In Johansson’s experiment, three dots oscillate about the screen
with two of the dots moving horizontally and the third dot moving
diagonally between them (see Fig. 2b and Supplementary Movie 1).
Humans perceive this stimulus as a shared horizontal oscillation of all
three dots, plus a nested vertical oscillation of the central dot. Similar
to previous offline algorithms15, our online model identifies the pre-
sence of two motion components (Fig. 2c): a strong shared motion
strength, λshared (magenta) and weaker individual motion, λind, for the
central dot (green). The individual strengths of the outer two dots
(light and dark green), in contrast, decay to zero. Mostmotion sources
within the structure are inferred to be small (dotted lines in Fig. 2d).
Only two sources feature pronounced oscillations: the x-direction of
the shared motion source, μshared, x, (magenta, solid line) and the
y-direction of the central dot’s individual source, μind, y, (green, solid
line), mirroring human perception. As observed velocities are noisy,
they introduce noise in the inferred values of μt, which fluctuate
around the smooth sine-functions of the original, noise-free stimulus.
As expected fromwell-calibrated Bayesian inference, themagnitude of
these fluctuations is correctly mirrored in the model’s uncertainty, as
illustrated by the posteriors’ standard deviation

ffiffiffiffiffiffiffiffiffiffi
f Σðλ2t Þ

p
(shaded areas

in Fig. 2d).
In the second experiment, known as the Duncker wheel, two dots

follow the motion of a rolling wheel, one marking the hub, the other
marking a point on the rim (Fig. 2e). The two dots describe an intricate
trajectory pattern (see Fig. 2f and Supplementary Movie 2), that,
despite its impoverished nature, creates the impression of a rolling
object for human observers, a percept that has been replicated by
offline algorithms15. Likewise, our online model identifies a shared
(magenta in Fig. 2g) plus one individual (dark green) component, and
decomposes the observed velocities into shared rightward motion
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plus rotationalmotion for the dot on the rim (see Fig. 2h). Notably, the
shared motion component is discovered before the revolving dot’s
individual motion, leading to a transient oscillation in the inferred
shared motion source, μshared (see light magenta trace in Fig. 2h) — an
onset effect that could be tested experimentally.

In summary, the online hierarchical inference model successfully
identified the structure underlying the motion displays, provided
Bayesian certainty estimates for the inferred motion, and replicated
human perception in these classical psychophysics experiments.

Online inference outperforms ideal observers in explaining
human structure perception
Having qualitatively replicatedmotion structure inference in common
motion displays, we next asked if our online model could quantita-
tively explain human motion structure perception. To address this
question, we reevaluated behavioral data from Yang et al.17, where
participants had to categorize the latent structure of short motion
displays (see Fig. 3a). Motion scenes followed one of four structures
(Fig. 3b) and were generated stochastically from the same generative
model underlying our hierarchical inference model. Owing to their
stochastic generation, scenes often were ambiguous with regard to
their latent structure, prompting distinct error patterns in human
responses (see confusion matrix in Fig. 3c). For instance, indepen-
dently moving dots were more frequently misclassified as clustered
motion (I-C element) than vice versa (C-I element), global motion was
highly recognizable, and nested hierarchical motion was more fre-
quently misperceived as clustered than as global.

To test if human responses arise fromnormative, Bayesianmotion
structure inference, Yang et al. modeled these responses in two steps
(blue branch in Fig. 3d): first, an offline Bayesian ideal observer, which
was provided with the trajectories of all objects within a trial, calcu-
lated the likelihood for each of the four structures. Then, these four
probabilities were fed into a choice model with a small set of
participant-specific fitting parameters (see Methods). This model

captured many aspects of human responses, including task perfor-
mance, typical error patterns, single-trial responses, and participant-
specific differences. Yet, the model arrived at these probabilities by
comparing the likelihoods of the full sequences for all four candidate
structures, and so had no notion of how a percept of structure could
emerge over the course of the trial.

Thus, we next asked if our online model, which gradually infers
the structure during the stimulus presentation, was better able to
account for the observed response pattern. As our model by design
inferred real-valuedmotion strengths λ rather thanonly discriminating
between the four structures used in the experiment, we added an
additional stage that turned the inferred motion strengths into a
likelihood for each of the four structures at trial end (red branch in
Fig. 3d, see Methods). To do so, we computed five hand-designed
features from the seven-dimensional vector λt (besides one global and
three individual strengths, there are three possible two-dot clusters),
and trained a multinomial logistic regression classifier on the features
to obtain likelihood values for each of the structures. The classifier was
trained on the true structures of the trials, and thus contained no
information about human responses. Finally, we fitted the same choice
model as Yang et al. to the participants’ responses.

The confusion matrix predicted by our model shows an excellent
agreement with human choices, both when averaged across partici-
pants (Fig. 3e), and on a per-participant basis (see Supplementary
Figs. 3 and 4). Indeed, our model beats the original computational
model in terms of response log-likelihoods for all of the 12 participants
(see Fig. 3f; p <0.001, two-sided paired Wilcoxon signed-rank test).
Furthermore, the online model overcomes the systematic under-
estimation of global motion (G-G matrix element) that previous, ideal
observer-based approaches suffered from16,17. Importantly, in our
model, any information connecting the stimulus to the eventual choice
is conveyed through themotion strengths, λt, as a bottleneck. The fact
that the online hierarchical inference-based approach describes
human responses better than the ideal observer-based model of Yang

Fig. 2 | Online hierarchical inference replicates human perception of classical
motion displays. a In object-indexed experiment designs, every observable velo-
city is bound to an object irrespective of its location. Many psychophysics studies
fall into this class of experiment design. b Johansson’s 3-dot motion display.
Humans perceive the stimulus as shared horizontal motion with the central dot
oscillating vertically between the outer dots. c The online model’s estimate of the
motion strengths, λt (a single motion strength is shared across both spatial
dimensions). The component matrix, C, is shown in the top-left as a legend for the
line colors. Circles next to the matrix show the assignment of the rows in C to the
dots in panel b. d The model’s posterior distribution over the motion sources, st,

during the gray-shaded period in panel c. Shown are the mean values, μt, as lines
along with the model’s estimated standard deviation (shaded, only for two com-
ponents for visual clarity). e The Duncker wheel resembles a rolling wheel of which
only the hub and one dot on the rim are visible. f Despite its minimalist trajectory
pattern, humans perceive a rolling wheel. g Inferred motion strengths, λt. The
model identifies sharedmotionplus an individual component for the revolving dot.
h Inferredmotion sources, μt, for the duration in panelg. Color gradients along the
lines indicate time (from low to high contrast). For visual clarity, μt has been
smoothedwith a 50ms box filter for plotting. Source data are provided as a Source
Data file.
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et al. indicates that ourmodel may sharemechanistic features with the
human perceptual apparatus.

Explaining motion illusions that rely on spatial receptive fields
In contrast to the object-indexed experiments discussed above,
another class of psychophysics experiments employs velocity stimuli
that remain at stationary locations (see Fig. 4a), typically in the form of
apertures of moving dots or drifting Gabors. This class, which we refer
to as location-indexed experiments, is furthermore popular in neu-
roscience as it keeps the stimulus’ local visual flowwithin an individual
neuron’s spatial receptive field throughout the trial21. We investigated
our model’s ability to explain illusory motion perception in two dif-
ferent types of location-indexed experiments: motion direction
repulsion in random-dot kinematograms (RDKs)36–41, see Fig. 4, and
noise-dependent motion integration of spatially distributed
stimuli42,43, see Fig. 5.

We modeled perception in these experiments by including a self-
motion component and added a vestibular input signal to the obser-
vables (see Fig. 4b, and cf. Fig. 1a–c). The vestibular input, which we
fixed to have zero mean plus observation noise, complemented the
visual input, which is ambiguous with regard to self-motion and

globally shared object motion and can induce illusory self-motion
("vection”)44–46. In turn,wemodel the subjectively perceived velocity of
objects, relative to the stationary environment, as the sum of all
inferred motion sources excluding self-motion (see Fig. 4c and
Methods).

In the RDK experiment, a participant fixates the center of an
aperture in which two groups of randomly positioned dots move lin-
early with opening angle γ (see Fig. 4d) and subsequently reports the
perceived opening angle. Motion direction repulsion occurs if the
perceived angle is systematically biased relative to the true
opening angle.

As previously reported, the repulsion bias can change from an
under-estimation of the opening angle for small angles to an over-
estimation for large angles (data from ref. 36 reprinted as black dots in
Fig. 4e). We replicated this effect by simulating two constant dot
velocities with opening angles that varied across trials. Our model
decomposed the stimulus into self-motion, shared motion and indi-
vidual (group) motion. Across opening angles, it featured a triphasic
psychometric function with angles smaller than ~40° being under-
estimated, angles between ~40° and ~110° being over-estimated, and
even larger angels being unbiased (purple curve in Fig. 4e). Thematch
with human biases arose without systematic tuning of simulation
parameters (the simulations presented in this manuscript were mostly
performed with a set of default parameters, see Methods). Inspecting
themodel’s inferredmotion components revealed that, for small γ, the
negative bias arose from integrating all dots into a single, coherent
motion component while disregarding individual dot motions (left
inset in Fig. 4e). Intermediate γ, in contrast, caused the shared com-
ponent to be correctly broken up into two individual components—
plus a small illusory self-motion component (right inset in Fig. 4e). This
self-motion, which is ignored in the perceived velocities, widened the
perceived opening angle between the two groups of dots. For even
larger γ, the illusory self-motion vanished yielding unbiased percepts.

For fixed opening angles, motion direction repulsion is further-
more modulated by relative contrast and speed difference between
the two motion components. Specifically, for an opening angle of
γ = 45°, Chen et al.37 have shown that increasing the contrast of one dot
group inflates the perceived opening angle—heremeasured relative to
horizontal to separate cause and effect—of the other, constant-
contrast group (Fig. 4f, left). We replicated this effect in simulations
that operationalized visual contrast as an (inverse) multiplicative fac-
tor on the observation noise variance, σ2

obs. For an opening angle of
γ = 45°, our model featured a positive and monotonically increasing
repulsion bias as the second group’s contrast increases (purple line in
Fig. 4f, right), similar towhat has been previously reported. For smaller
opening angles, in contrast, our model predicts an inversion of the
repulsion bias, which first decreases at low contrast and then increases
again for higher contrast (blue line in Fig. 4f, right)—a prediction that
remains to be tested. Increasing the speed of one motion component
for large opening angles also introduces a positive bias in the per-
ceived opening angle of the other component in human
participants36,38. We replicated this effect by increasing the second
group’s speed, which, for a γ = 90° opening angle, yielded a relatively
stable bias of ~5° across different motion speeds (dashed line in
Fig. 4g), in line with the aforementioned experimental data from
Braddick et al.36 and, for a γ = 60° opening angle (purple line in Fig. 4g),
qualitatively replicated the initial rise and then gradual decline in the
bias, as reported for this opening angle by Benton and Curran38. Fur-
thermore, our model predicts that the speed-dependent bias changes
to a biphasic curve for smaller opening angles (blue line), providing
another testable prediction.

Extending the basic MDR experiment from Fig. 4d, Takemura
et al.39 investigated how motion in a surrounding annulus affects the
perceived directions of inner RDKs, see sketch in the top left of Fig. 4h.
Two inner RDKs move to the left and right, respectively, while two

Fig. 3 | The model quantitatively explains human perception of nested and
ambiguous motion scenes. a Stochastic motion stimulus from Yang et al.17 con-
sisting of three dots rotating on a circle. b Each trial followed one of four motion
structures. If clusteredmotionwaspresent (CorH structure), any pair ofdots could
form the cluster. c Confusion matrix of human responses, averaged over all 12
participants. d Models for predicting human responses. Yang et al. employed a
Bayesian ideal observer as the basis for fitting a participant-specific choice model.
Ourmodel, in contrast, calculates the likelihood for each structure from themotion
strengths, λt, at trial end and then fits the same choice model as Yang et al. for
translating probabilities into human responses. e Confusion matrix of our model.
f Log-likelihood of human responses relative to chance level, for both models. The
analyses in panels e and f are leave-one-out cross-validated to prevent overfitting.
Source data are provided as a Source Data file.
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additional RDKs in the annulus move up and down, respectively. For
this stimulus human observers show no direction repulsion39. We
simulated this extended MDR experiment with our hierarchical infer-
ence model by extending the motion tree of Fig. 4b to include two
group components for the outer and inner RDKs, respectively, on the
third level, and four individual components (oneperRDK) as leaves, on
the forth level (cf. Supplementary Fig. 5). Across 200 simulated trials
(see Methods), the distribution of inner RDK directions perceived by
the model at trial end (see histogram in Fig. 4h) match the reported
unbiased perception of humans.

Our model was further able to replicate human perceptual biases
for various other combinations of dot motion in the inner and sur-
rounding RDKs explored by Takemura et al. (see Fig. 4i–l, and Sup-
plementary Fig. 5 for example trials). The percepts to all combinations
are qualitatively replicated by our model. When both surrounding
RDKsmove downward, as shown in Fig. 4i, the perceivedmotion of the
inner RDKs is slightly biased upward. The reason for the bias in the
model’s percept is a small illusory self-motion component in upward
direction which necessitates a slight diagonal upward tilt of the inner
RDKs’ individual motions for explaining their horizontal retinal velo-
cities. When modifying the stimulus such that the inner RDKs move
diagonally with a 90 degree opening angle (see Fig. 4j–l), human and
model percepts remain unbiased in the case of downward (Fig. 4j) and

bi-directional surrounding motion (Fig. 4k). In both cases, the direc-
tional contrast of the presented velocities obviates the illusory iden-
tification of self-motion, thereby implicating unbiased percepts of the
model. If, however, the surrounding RDKs move upwards, strong
direction repulsion on the inner dots was reported39 leading to their
perceived motion to become almost horizontal (Fig. 4l). In the model,
this effect originates from illusory downward self-motion arising from
the general alignment of the presented velocities. Overall, our hier-
archical inference model replicated biased and unbiased perception
across a variety of stimulus conditions.

Turning to noise-dependent motion integration of spatially dis-
tributed stimuli, we investigated a motion illusion by Lorenceau42

which has received little attention in the literature (see Fig. 5). Two
groups of dots oscillate in vertical and horizontal orientation,
respectively (see Fig. 5a and Supplementary Movie 3). Both groups
follow sine-waves with identical amplitude and frequency, but main-
tain a relative phase shift of π/2 that is consistent with an imaginary
global clockwise (CW) rotation (indicated by a gray arrow in Fig. 5a).
This stimulus can be considered to be location-indexed, as the small
oscillation amplitude of less than 1 degree of visual angle caused the
stimulus to conveniently fit into the receptive fields of individual
neurons of the human homolog of area MT47. Interestingly, the sti-
mulus’ percept changes once disturbances orthogonal to the axes of

Fig. 4 | Hierarchical inference explains motion illusions in location-indexed
experiments. a In location-indexed experiments, motion flow is presented at sta-
tionary spatial locations. b Considered latent motion components. Self-motion,
which affects all retinal velocities in the opposite direction (−1) integrates both
visual input and a vestibular signal (here: zero + noise). c Perceived object velo-
cities, relative to the environment, are the sum of all inferred motion components
excluding self-motion. d In motion direction repulsion experiments, two groups of
dots move at constant velocity with opening angle γ. e The direction in which
human perception of the opening angle is biased depends on the true opening
angle. Black dots: human data, reproduced from ref. 36, error bars denote S.E. of
themean across subjects; n = 3 subjects, 80 trials per angle and subject. Purple line:
model percept. Insets: the model’s inferred motion decomposition. f Varying the
contrast of one dot group modulates the biased percept of the angle of the other
group. Purple: model percept for γ = 45°, qualitatively matching data from ref. 37.
Blue: predicted inversion of the bias for smaller opening angles. g Same as panel
f, but for varying the speed of the second group. Purple: model percept for γ = 60°,

qualitatively matching data from ref. 38. Dashed blue: model percept for γ = 90°,
qualitativelymatching data from ref. 36. Solid blue: predicted biphasic function for
smaller opening angles. h–l Extended experiment from ref. 39which surrounds the
two central RDKs with additional RDKs in an annulus. The hierarchical inference
model replicates human perception in various conditions. h A surround with dots
moving vertically both up- and downwards ("bi-directional surround” in ref. 39,
indicated by orange arrows in the top-left sketch’s annulus) causes no repulsion in
the perceived directions of horizontally moving RDKs in the center (darker orange
arrows in the top-left sketch’s center). Our model replicates this perception as
shown in the histogram of 200 trial repetitions. i Coherentlymoving annulus RDKs
cause the perceived inner velocities to be biased away from the surround direction.
j For diagonallymoving inner RDKs, the same coherent downward surround has no
noticeable effect. k Neither does a bi-directional surround bias the percept of
diagonally moving inner RDKs. l An upward surround, in contrast, biases the per-
cept of the inner RDKs to close-to-horizontalmotion. Source data are provided as a
Source Data file.
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oscillation are added (called “motion noise” in ref. 42, see Fig. 5b).
Without motion noise, participants perceive transparent motion, that
is, thedotswithin either group are combined to a rigidlymovingobject
according to common fate, and both groups are perceived as moving
separately. Their movement, however, is not perceived as strictly
vertically and horizontally, but rather the stimulus induces an
impression of slight counter-clockwise (CCW) rotation, that is,
“opposite to veridical”42. With motion noise, in contrast, the percept
switches in twoways: all dots appear tomove coherently along a circle,
and the perceived direction of movement becomes CW. These per-
cepts are illustrated in Fig. 5b.

Applied to this stimulus, our model replicates the perceived
rotation direction reversal with increased motion noise, which we
simulated through an increase in the observation noise σ2

obs. Specifi-
cally, themodel’s perceived velocities for both groups of dots featured
a slight global CCW rotation on top of two generally separated groups
for the noise-free stimulus, and a single global CW rotation once
observation noise is increased (Fig. 5c). Inspecting themodel’s motion

decomposition provides a possible answer to how this flip in perceived
rotation emerges, which is illustrated in Fig. 5d by the example of the
horizontal group. On noise-free presentation, dot motion was
decomposed into clockwise rotating self-motion (golden arrow) plus a
horizontally elongated, yet slightly CCW rotating groupmotion (green
arrow), leading to the transparent CCW motion percept. Once obser-
vation noise increased, the inferred motion structure discarded the
separated groups in favor of a single global motion component
(magenta), leading to the percept of coherent CW rotation for all dots
(see Supplementary Fig. 6 for trajectories of the motion strengths and
sources under both conditions).

Object recognition and perceptual switching of nested
structure-from-motion displays
Motion relations do not only aid dynamic tasks, such as tracking and
prediction, but also provide essential cues for object recognition.
Structure-from-motion (SfM), the perception of 3D objects from 2D
visual displays, is well-studied in psychology48–54 and neuroscience55–58.
We asked whether our model can support SfM perception and repli-
cate the salient phenomenon of perceptual switching when presented
with ambiguous stimuli (see Fig. 6a). Furthermore, using themodel, we
identified SfM displays of nested objects which could inspire future
psychophysics experiments studying how structure interacts with
perceptual ambiguity.

Typical SfM displays, like the point cloud-cylinder in Fig. 6a and
Supplementary Movie 4, involve rotational motion in three dimen-
sions, contrasting with the translational motion in two dimensions
considered so far. Our generative model supports such 3D rotation in
location-indexed experiments: as illustrated in Fig. 6b, introducing a
rotational motion source, srot, which describes the cylinder’s angular
velocity around the y-axis, yields a linear dependence of the observed
retinal velocities on srot at every input location (dashed orange circles)
owing to the locations’ fixed coordinates. Thus, rotational motion is
supported naturally by the component matrix, C, (cf. Fig. 1e) and
integrates without any changes into our hierarchical inference model.

Ambiguous SfM displays, such as the considered frontal view of a
rotating cylinder, furthermore feature equivocal correspondences of
spatially overlapping inputs to the cylinder’s surface at the front and
back. Mentally assigning the overlapping left- and rightward retinal
velocities to their depth locations is key to forming a coherent percept
of the 3D object. To support such percepts in our model, we added a
basic assignment process: spatially overlapping velocities are assigned
to their depth location on the cylinder (front or back) such that the
assignment locally minimizes the model’s prediction error, ϵt, in Eq.
(2). Furthermore, this assignment is independently re-evaluated at
each input location with a uniform probability in time (see Methods).
We tested the model’s ability to perceive SfM by using a motion tree
with self-motion, rotational motion and individual motion (see Fig. 6c,
and Supplementary Fig. 7 for a control simulation with more motion
components). As shown in Fig. 6d, the model swiftly identifies rota-
tional motion across all input locations at a constant angular speed,
matching the human percept of a rotating cylinder. Subsequently, the
percept switches randomly and abruptly between CW and CCW rota-
tion, with inter-switch-intervals following a Gamma distribution (see
Fig. 6e). The resulting stochastically switching percepts with typical
durations of a few seconds match the reported bistable perception of
humans53,57.

To explore how more complex structures could interact with
SfM perception, we asked how our model interprets the rotation of
nested point-cloud cylinders (see Fig. 6f and Supplementary
Movie 4). Their rotation is easily identified by humans49, and fea-
tures a more complex structure than basic SfM displays that only
require a single rotational motion source. To present this stimulus
to the model, the extended graph in Fig. 6g features rotational
sources not only for the inner and outer cylinders (light and dark

Fig. 5 | Noise-dependent perceptual changes formotion integrationof spatially
distributed stimuli. a In the motion illusion from Lorenceau42, a vertically and a
horizontally oscillating group of dots maintain a 90°-phase shift consistent with
global clockwise rotation (indicated as gray arrow). b The noise-free stimulus
(left branch) evokes transparent motion with an additional counter-clockwise
rotating percept in human observers. Adding motion noise by disturbing dot
trajectories orthogonally to their group’s oscillation axis (right branch; modeled by
increased observation noise σ2

obs) flips the percept to a single coherent rotation of
all dots in clockwise direction. c The model’s perceived velocities in both stimulus
conditions (time = color gradient from low to high contrast; t ≤ 2 s in noise-free
condition; t ≤ 5 s in noisy condition). For visual clarity, perceived velocities have
been smoothed with a 200ms box filter for plotting. d Illustration of the model’s
inferred motion decomposition. For noise-free stimuli, clockwise rotating self-
motion is compensated by counter-clockwise rotating group motion (sketched
here for the horizontal group). Withmotion noise, only a single, clockwise rotating
shared motion component is inferred for all dots. Source data are provided as a
Source Data file.
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blue, respectively), but also the possibility of shared motion
(magenta) affecting both cylinders. Where both cylinders over-
lapped, the assignment now minimized the prediction error over 4
overlapping retinal velocities (24 possible combinations per loca-
tion), but remained otherwise unchanged. When both cylinders
rotated with the same angular velocity of 90°/s, the model inferred
a single shared rotational component (see Fig. 6h) leading to the
impression of rigid rotation in which perceptual switches occur
simultaneously for both cylinders. Identifying a structure with a
single component rather than separate rotations for both cylinders
is the result of the model’s preference of simple structures.
Increasing the angular velocity of the inner cylinder by 50% to
135 °/s (see Fig. 6i) did not change the model’s percept of a rigidly
shared rotation, but led to a slightly higher perceived speed of
rotation. Inspecting the inference process revealed that the
assignment process often assigned fast-moving dots of the inner
cylinder to the outer cylinder and, vice versa, slower moving outer
dots to the inner cylinder. This assignment yielded a sufficiently
coherent interpretation of all retinal velocities as originating from a
single rotation (within the bounds of perceptual acuity, σobs) for the
model to prefer the simpler structure. Finally, a display in which the
outer cylinder rotates faster than the inner cylinder (135 °/s and
90 °/s, respectively; see Fig. 6j) changed the model’s inferred
structure to perceiving different rotational speeds for both cylin-
ders. Yet, even though each cylinder had its distinct perceived
rotation, their rotational directions remained aligned and percep-
tual switches still occurred simultaneously, a perceptual linkage
known from related experiments54.

The nested SfM displays in Fig. 6f–j provide testable predictions
for future psychophysics studies (see Supplementary Movie 4 for a
video of all conditions). The model’s percepts across all conditions
matched the percept of the authors.

Experimental predictions from a biological network model of
hierarchical inference
Finally, we asked whether and how a biologically plausible neural
network could implement our online hierarchical inference model. To
this end, we devised a recurrent neural network model of rate-based
neurons. Naturally, such modeling attempt relies on many assump-
tions. Nonetheless, we were able to identify several experimentally
testable predictions that could help guide future neuroscientific
experiments.

Following Beck et al.59, we assumed that task-relevant variables
can be decoded linearly from neural activity ("linear population code”)
to support brain-internal readouts for further processing, actions and
decisionmaking. Furthermore, we employed a standardmodel for the
dynamics of firing rates, ri(t), and assumed that neurons can perform
linear and quadratic integration59–62:

τi ∂t ri = � ri + f iðwT
i r + r

T QðiÞ rÞ, ð4Þ

with time constant τi, activation function fi(⋅), weight vector wi and
matrix Q(i) for linear and quadratic integration, respectively. The rate
vector, r(t), here comprises all presynaptic firing rates, including both
input and recurrent populations.With these assumptions, wederived a
network model with the architecture shown in Fig. 7a, which imple-
ments the online model, given by Eq. (1)–(3), via its recurrent inter-
actions and supports linear readout of all task-relevant variables. That
is, for every task-relevant variable, x, there exists a vector,ax, such that
x =aT

x r (see Supplementary Note 4 for the derivation).
The network consists of three populations. The input population

(bottom in Fig. 7a) encodes the observed velocities, vt=σ
2
obs, and

observation precision, 1=σ2
obs, in a distributed code. While any code

that supports linear readout of these variables could serve as valid
neural input, we chose a specific model that, as shown below,

Fig. 6 | Object recognition and perceptual switching of nested structure-from-
motion (SfM) displays. a Cylindrical SfM stimulus. A random point cloud on the
surface of a rotating, transparent cylinder (left) supports two possible percepts
when viewed from the front without depth information (right). Humans perceive
the structured motion of this 2D projection as a rotating 3D cylinder, albeit with
bistable direction of the perceived rotation. b Top view illustration of how the
generative model supports rotational motion. The rotational motion source, srott ,
describes angular velocity about the vertical axis (srot > 0 for CCW rotation, by
definition). In location-indexed experiments, observed velocities, vt, at a (fixed)
location with angle φ and radius R are a linear function of the rotational motion
source. In the frontal view of SfM experiments, only the x-component,
vx = �R sinðφÞ srott , and the vertical y-component, vy =0, are visible. c Motion tree
and correspondence problem. The graph contains self-motion, rotational motion
of the entire cylinder, and individual motion for every location. For any x-y coor-
dinate, there exist two overlapping observed velocities which are ambiguous
regarding their depth position (front or back). We performed the assignment of
observations to their perceiveddepth (front or back) such that theprediction error,
ϵt, in Eq. (2) isminimized. d 3D percept and perceptual bistability. Like humans, the
model identifies rotation as the single motion component. The value of srott

switches randomly between CW and CCW rotation with constant angular speed.
e Distribution of perceptual switches. The distribution of duration-of-percepts
closely follows a Gamma distribution, as commonly reported in human psycho-
physics. f Extension of the SfM display adding a smaller point cloud-cylinder,
nested within the original cylinder. g Motion tree for the extended experiment.
Three rotational components are provided: shared rotation of both cylinders,
rotation of the outer cylinder, and rotation of the inner cylinder. The correspon-
dence problem now demands assigning 4 observations where both cylinders
overlap. h Perceived structure for identical angular speed of both cylinders. The
model infers a single shared rotational component. i Fast inner cylinder. When
increasing the angular speed of the inner cylinder by 50% (sketch on the left), the
inferred structure is unaffected (right): the cylinders are perceived as having the
sameangular velocity. j Fast outer cylinder. In contrast,when increasing the angular
speed of the outer cylinder by 50% (left), the cylinders’ speeds are perceived as
separated (right). For visual clarity, the trees in panels c and g show only 5 and 3
receptive field locations for the outer and inner cylinder, respectively, while for the
simulations, we used 7 and 5 locations. Source data are provided as a Source
Data file.
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captures many properties of motion-sensitive area MT. The dis-
tributed population (center in Fig. 7a) simultaneously represents the
squaredmotion strengths, λ2t , mean of the sources,μt, and prediction
errors, ϵt, in a distributed code with linear readout. For those, almost
arbitrary readouts suffice, such that we chose randomly generated
readout vectors, a. Notably, we propose the prediction errors, ϵt, to
be linearly decodable, which allowed Eq. (2) to be implemented with
the neuron model in Eq. (4) (see Supplementary Note 4, Sections 3
and 4). All neurons in the distributed population have simple acti-
vation functions, fi( ⋅ ), that are linear around some baseline activity.
The linear decodability of λ2t , μt, and ϵt are testable predictions.
Finally, the 1-to-1 population (top in Fig. 7a) represents the uncer-
tainty, Σ = fΣ(λ2), in a one-to-one mapping, rm / f Σðλ2mÞ, with rm being
the firing rate of either a single cell or, more likely, a small popula-
tion. The theoretical motivation behind this representation is two-
fold: on the one hand, the non-linear form of fΣ( ⋅ ) prevents a dis-
tributed, linearly decodable representation (see Supplementary
Note 4, Section 5); on the other hand, the particular shape of f Σðλ2mÞ,
shown in Fig. 1i, mirrors the typical activation function of Type-I

neurons63, such that the proposed representation emerges naturally
for the activation function, f ΣðaT

λ2m
rÞ, in the 1-to-1 population (using

the fact that λ2m can be read out neurally with weights w=aλ2m
).

Overall, the network structure predicts λ2t , μt, and ϵt to be linearly
decodable, and the components of fΣ to be independently encoded
in single neurons or small neural populations.

Even though the network model supports both the object-
indexed and location-indexed experiments from Figs. 2–6, the reti-
notopic organization of the early visual system21,64 brings a location-
indexed perspective closer in line with our understanding of how the
cortex encodes visual information. Furthermore, as we show in Sup-
plementary Note 1, Section 5, our model can be extended to support
motion sources in polar coordinates (see Fig. 7b), such that it supports
salient real-world retinal input motifs, such as rotation and radial
expansion/contraction about the fovea. (Note that rotation and
expansion on the retina are conceptually distinct from the cylindrical
rotation, srot, in structure-from-motion, discussed earlier.) Repre-
sentations of angular motion, sφ, and radialmotion, sr, can also coexist
with translational motion (i.e., linear motion in Cartesian coordinates)

Fig. 7 | Hierarchical inference can be performed by a biologically realistic
network model. a Network model implementing the online hierarchical inference
model. Linear and quadratic interactions are indicated by direct arrows and Quad
boxes, respectively. In parentheses, the variables represented by each population.
b Rotational stimulus in a location-indexed experiment. Besides translational
(Cartesian) motion, the model also supports rotational, sφ, and radial motion, sr.
c Tuning centers in amodel of areaMT. A local population of neurons, which share
the spatial receptive field highlighted in panel b, cover all directions and speeds
with their velocity tuning centers. d Response function for the neuron highlighted
in panel c. The neuron responds strongly to local velocities into the upper-right
direction with a speed of ~5°/sec. Max. rate = 29.5 spikes/s. eMotion structure used
for the network simulation in panels f–j, including simultaneous translational,
rotational and radial motion sources. f Illustration of the stimulus. After 1s of
counter-clockwise rotation around the fixation cross, the rotation switches to
clockwise. At t = 2 s, rightward translation is superimposed on the rotation.
gMotion sources inferred by the network (solid lines: distributed population read-
out; dotted lines: solution by the onlinemodel given by Eqs. (1)–(3)). Shown isμt for

translational, rotational, radial and individual motion. Only 4 individual compo-
nents (2 x- and 2 y-directions) are shown for visual clarity. h Firing rates of the 1-to-1
population. Rates are in arbitrary units (a.u.) because the theory supports scaling of
firing rates with arbitrary factors. i Same as panel h, but for a random subset of 25
neurons of thedistributedpopulation. j Sameaspanelh, but for a randomsubset of
40 neurons of the input population, and smoothed with a 50ms box filter for
plotting. k Stimulus of a proposed neuroscience experiment. Velocities in dis-
tributed apertures follow the generativemodel fromFig. 1 using sharedmotion and
individual motion. l Different trials feature different relative strengths of shared
and individual motion, ranging from close-to-independent motion (left) to highly
correlated motion (right).m Linear readout of the fraction of shared motion from
neural activity. Seven different fractions of shared motion were presented (x-axis;
noise in x-direction added for plotting, only). A linear regressionmodel was trained
on the outermost conditions (blue dots). Intermediate conditions were decoded
from the network using the trained readout (red dots). Only a subset of
7 × 500= 3500 points is shown for visual clarity. Source data are provided as a
Source Data file.
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within the same population. Selective neural response to rotation,
expansion/contraction and translation, as well as combinations
thereof, such as spiraling, has been frequently reported in the dorsal
medial superior temporal area (MSTd)19,65.

Before demonstrating this capability in simulations, let us provide
further information about the model’s input population, and how it
relates to known properties of area MT. To do so, consider the
location-indexed stimulus in Fig. 7b. During fixation, each aperture
stimulates a population in retinotopically organized, motion sensitive
area MT21. Neurons in MT are tuned to respond preferentially to a
certain direction and speed (Fig. 7c), such that the full population
jointly covers all velocities in a polar grid66,67. The response of indivi-
dual neurons to velocities within their spatial receptive field is com-
monly modeled by a log-normal function for speed67 and a von Mises
function for direction68, leading to the bump-like response function
shown in Fig. 7d. As a third factor, higher visual contrast (smaller σ2

obs)
leads to higher firing rates69. As we derive in Supplementary Note 4,
Section 6, a neural population with these response functions supports
linear readout of input velocities, vt=σ

2
obs, and precision, 1=σ2

obs, in
Cartesian coordinates. This provided us with a biologically realistic
and, at the same time, theoretically grounded input populationmodel
which we used in the following network simulations.

We tested the network’s ability to perform online hierarchical
inference in the simulation shown in Fig. 7e–j. To challenge the net-
work, we employed a stimulus that combined shared rotation and
shared translation (motion tree in Fig. 7e). Six input populations with
receptive fields shown in Fig. 7f projected to a distributed population
of 100 neurons and a 1-to-1 population of size 8 (one per motion
strength). After one second of retinal velocities of counter-clockwise
rotation (Fig. 7f, left), these velocities switched to clockwise rotation
(center), followed by a superposition of clockwise rotation and right-
ward translation (right). As the network response for the three popu-
lations to this stimulus shows (Fig. 7h–j), input neurons fired sparsely
and were only active if the stimulus matched their preferred direction
or speed. Neurons in the distributed population, in contrast, showed
fluctuating activity with little apparent structure, and exhibited
population-wide transients upon changes of the input. Finally, the 1-to-
1 population responded more graded and with a short delay, sug-
gesting that every rate, rm, describes a small cortical population rather
than individual neurons. Knowledge of the (randomly drawn) vectors,
ax, of the simulated network, allowed us to read out the network’s
latent motion decomposition at each time point (solid lines in Fig. 7g).
This revealed that the network correctly decomposed the input,
including the overlaid rotational and translational motion, and closely
matched the online model (dotted lines).

In experiments with humans and animals, we have no access to
these readout vectors, ax. We therefore simulated a possible experi-
ment that tests our model and doesn’t require this knowledge (see
Fig. 7k–m), while benefiting from precise stimulus control. Several
apertures, located at the receptive fields of recorded neurons in
motion sensitive areas (e.g., area MT or MSTd), present a motion sti-
mulus according to the generative model from Fig. 1. Velocities across
the apertures are positively correlated owing to a shared motion
source, but also maintain some individual motion (see Fig. 7k and
Supplementary Movie 5). A series of trials varies the fraction of shared
motion in the stimulus, q≔ λ2shared=ðλ2shared + λ2indÞ, ranging from almost
independent motion (Fig. 7l, left) to almost perfect correlation (right).
According to the network model, λ2 can be read out linearly. For the
simulation in Fig. 7m, we presented the network with trials of seven
values of q.We then trained a linear regressionmodel to predict q from
the neural activity for the two most extreme structures (blue dots in
Fig. 7m), and decoded q for the intermediate structures using this
regression model (red dots in Fig. 7m). Owing to the stochastic sti-
mulus generation, the network’s motion structure estimates, λt, fluc-
tuate around the true strength—yet, on average, the trained linear

readout correctly identified the fraction of global motion in the sti-
mulus. This is a strong prediction of the network model, which could
be tested in a targeted neuroscientific experiment.

Discussion
We have proposed a comprehensive theory of online hierarchical
inference for structured visual motion perception. The derived
continuous-time model decomposes an incoming stream of retinal
velocities into latent motion components which in turn are organized
in a nested, tree-like structure. A scene’s inferred structure provides
the visual system with a temporally robust scaffold to organize its
percepts and to resolve momentary ambiguities in the input stream.
Applying the theory to human visualmotion perception, we replicated
diverse phenomena from psychophysics in both object-indexed and
location-indexed experiment designs. Furthermore, inspection of the
model’s internal variables provided normative explanations for puta-
tive origins of human percepts and spawned concrete predictions for
psychophysics experiments. Finally, the online inference model
afforded a recurrent neural network model with visual inputs remi-
niscent of cortical area MT and latent structure representations remi-
niscent of area MSTd.

Our online model shares features with predictive coding70,71, a
theory positing that “higher” brain areas provide expectations to ear-
lier areas in a hierarchical model of sensory input and that neural
processing aims to minimize prediction errors between top-down
expectations and bottom-up observations. Like predictive coding, the
dynamics in Eq. (2) update the values of motion sources to minimize
prediction errors, ϵt, within the bounds imposed by the identified
structure. Yet, structure identification according to Eq. (1) follows a
different principle by computing a running average of motion source
magnitudes. This contrastswith common theories ofpredictive coding
in the brain72,73, which assume that the same computational principle is
repeated across cortical hierarchies, and demonstrates how hier-
archical visual processing could combine multiple interacting algo-
rithmic motifs. Moreover, the network model in Fig. 7a challenges the
prevalent view72,74 that error signals are necessarily represented by
distinct neural populations (or alternatively distinct dendritic
compartments75). While our networkmodel supports the possibility of
distinct error populations, we show that prediction errors could also
be computed and conveyed by the same neurons representing other
quantities, such as the motion sources, μt, and even the structure, λ2t ,
using a distributed neural code.

In the main text, we have for the sake of clarity limited the pre-
sentation of the theory to a basic version that nonetheless covers all
essential concepts. In Supplementary Note 3, we present several
extensions that are naturally covered by our model:
(i) observation noise, σobs, canbe time- and object-dependent, which

is relevant for modeling temporary occlusion of a subset of
stimuli;

(ii) observation noise can be non-isotropic (different values in x- and
y-direction),which is relevant for angle-dependent edge velocities
in apertures76;

(iii) for optimal inference, different motion components can feature
different time constants, since velocity is expected to change
more slowly for heavy objects due to higher inertia;

(iv) different motion components may tend to co-occur or exclude
one another in real-world scenes, which can be modeled by an
interaction prior of pairwise component compatibility; and

(v) when motion components are not present for a long time, they
will decay to zero, preventing their rediscovery, which can be
mitigated by a prior on motion strengths.

The current theory is limited to velocities as input, thereby
ignoring the well-documented influence of spatial arrangement on
visual motion perception, such as center-surroundmodulation77,78,
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adjacency26 or motion assimilation79, as well as Gestalt
properties80. Furthermore, the model does not solve the corre-
spondence problem in object-indexed experiments, but simply
assumes that velocities are correctly assigned to the input vector
as objects move about the visual field. For location-indexed
experiments, we have explored how structure inference in con-
cert with a basic assignment process, which minimizes the obser-
ver’s local prediction errors, could solve the correspondence
problem during structure-from-motion perception. Our work
focuses on the simultaneous inference of motion sources, st, and
motion strengths, λt. Other quantities, such as time constants and,
probably more importantly, the motion components, C, have been
assumed to be given. It is worth noting, however, that gradient-
based learning of C is, in principle, supported by the theory on
long time scales (see Supplementary Note 3, Section 5). Finally,
limited experimental evidence of the neural correlates of motion
structure perception required the neural network model to rely on
many modeling assumptions. The model’s predictions should act
as a starting point for further scientific inquiry of these neural
correlates.

Even though the sensory processes underlying object-indexed
motion perception necessarily differ from those of location-indexed
perception, our model describes human perception for both types of
experiments. Thus, both typesmight share the sameunderlying neural
mechanisms for structure inference. This raises the intriguing question
whether there exist stable, object-bound neural representations of
velocity. Furthermore, our work points towards a tight link between
neural representations of latent structure and representations of
uncertainty in that the estimated motion strengths, λt, determine the
credit assignment of prediction errors through the gating function,
f Σðλ2t Þ—a function that also computes the variance of motion compo-
nents, e.g., the brain’s uncertainty about flock velocity. Behaviorally,
sensory noise directly impacts the perceived structure of a scene as
demonstrated experimentally by the perceptual reversal in the
Lorenceau-motion illusion42 (cf. Fig. 5). More generally, our theory
predicts that the visual system will organize its percepts into simpler
structures when sensory reliability decreases. Moreover, the reliability
of visual cues plays a role in multisensory integration81, with area
MSTd82,83, but not area MT84, exhibiting tuning to vestibular signals.
Thus, MSTd may be a candidate area for multisensory motion struc-
ture inference. Overall, we expect our theoretical results to guide
targeted experiments in order to understand structured visual motion
perception under a normative account of statistical information
processing.

Methods
In what follows, we provide an overview of the generative model, the
online hierarchical inference model, the computer simulations, and
the data analysis. A more detailed presentation is found in the Sup-
plementary Information.

Generative model of structured motion
We consider K observable velocities, vk,d(t), in D spatial dimensions.
For notational clarity, we will consider in this Methods section only
the case D = 1 and use the vector notation, vt = ðv1ðtÞ,::, vK ðtÞÞT. The
extension to D > 1 is covered in Supplementary Note 1, Section 4.
Observable velocities, vt, are generated byM latent motion sources,
sm,d(t), abbreviated (for D = 1) by the vector st = ðs1ðtÞ,::, sM ðtÞÞT.
Velocities are noisy instantiations of their combined ancestral
motion sources, vt ∼N C st , σ

2
obs=δt I

� �
, where Ckm = +1, −1, and 0 in

K ×M component matrix, C, denote positive, negative and absent
influence, respectively. For the formal definition, observations, vt,
remain stable within a short time interval [t, t + δt), and the obser-
vation noise variance, σ2

obs=δt, ensures a δt-independent informa-
tion content of the input stream. In the online inference model,

below, we will draw the continuous-time limit, which will become
independent of δt. In computer simulations, δt is the inverse frame
rate of the motion display (default value: 1/δt = 60 Hz). Each motion
source (in each spatial dimension) follows an Ornstein–Uhlenbeck
process, dsm = −sm/τs dt + λm dWm, with time constant τs, motion
strength λm (shared across dimensions), and Wiener process Wm.
The OU process’s equilibrium distribution, N 0, τs

2 λ
2
m

� �
, introduces

a slow-velocity prior which, as we note, has recently been proposed
to originate from the speed-contrast statistics of natural images85.
The resulting marginal stationary velocity distribution of vk
is vk ∼N 0, σ2

obs=δt +
τs
2

PM
m= 1 C

2
km λ2m

� �
.

Radial and rotational motion sources. In location-indexed experi-
ments, the input’s location (e.g., a neuron’s receptive field) remains
fixed. For D = 2, the fixed input locations enable our model to support
rotations and expansions around various axes. In this manuscript, we
consider two cases: rotation around a vertical axis (SfM experiment in
Fig. 6) and rotation/expansion around the fovea (network model
in Fig. 7).

For rotations around a vertical axis, each input vk has fixed polar
coordinates (Rk,φk) as sketched in Fig. 6b. When describing rotation
by means of a rotational motion source, srott , we obtain for the noise-
free part of the observed velocity in Cartesian coordinates:
vk,x = �Rk sinðφkÞ srott , vk,y =0, and vk,z = �Rk cosðφkÞ srott . Owing to
the linear dependence of vk on srot, we can include the coefficients as a
column in component matrix, C, and srot as a motion source in the
vector st. Note that in the SfM experiments only the x- and y-directions
are observed.

Similarly, for rotation/expansion around the fovea, each input
vk has fixed polar coordinates (Rk, ϑk) with radial distance Rk and
angle ϑk, relative to the pivot point (we use different symbols than
for vertical rotation for notational clarity). Denoting radial and
rotational motion sources by sr and sφ, we obtain for the noise-free
part of vk in Cartesian coordinates: vk,x = sr cos ϑk � sφ Rk sin ϑk , and
vk,y = sr sin ϑk + sφ Rk , cos ϑk . Since Rk and ϑk are fixed coefficients,
the mapping (sr, sφ)↦ (vk,x, vk,y) is linear and, thus, can be described
by the componentmatrix C. The full derivation and an illustration of
the velocity relations in polar coordinates are provided in Supple-
mentary Note 1, Section 5.

Online inference
The goal of motion structure inference is to simultaneously infer the
value of motion sources, st, and the underlying structure, λ, from
a stream of velocity observations. The number of spatial dimensions,
D, component matrix, C, time constant τs, and observation noise σobs
are assumed to be known. The EM algorithm leverages that changes in
st and λ (if changing at all) occur on different time scales, τs and τλ,
respectively. For τλ≫ τs, the EM algorithm treats λ as a constant for
inferring st (E-step), and optimizes an estimate, λt, online based on the
inferred motion sources (M-step).

E-Step. For fixed λ, the posterior p st ∣ v0:t ; λ
� �

is always a multivariate
normal distribution, N μt ,Σt

� �
, and can be calculated by a Kalman-

Bucy filter86,87; see Supplementary Note 2, Sections 1, 2, and 3.1 for the
derivation. This yields coupled differential equations for the time
evolution of μt and Σt. To reduce the computational complexity of the
system, we perform an adiabatic approximation on the posterior
covariance, Σt, by assuming (a) that it has always converged to its
stationary value, and (b) that off-diagonal values in Σt are zero, that is,
we ignore correlations in uncertainty about latent motion sources in
the posterior distribution. As shown in the full derivation in Supple-
mentary Note 2, Section 3, the first assumption is warranted because
the stationary value of Σt depends only on the current structure esti-
mate, λt; then, because Σtdecays to stationarity at time scale τs/2, it can
always follow any changes in λtwhich happen at time scale τλ≫ τs. The
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second assumption is a modeling assumption: that biological agents
might disregard the subtle (and complicated) interactions between the
uncertainties of different motion sources and rely on their individual
uncertainties, instead. Using the two assumptions we derive a closed-
form solution for the posterior variance,

Σmm =
σ2
obs

τs kcmk2
�1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

τs2 kcmk2
σ2
obs

λ2m

s !
= : f Σðλ2mÞ , ð5Þ

with kcmk2 =
PK

k = 1 C
2
km denoting the vector-norm of them-th column

of C. This is Eq. (3) of the main text. The plot in Fig. 1i has parameters
∥cm∥2 = 4, τs = 300ms, and σobs = 0.05. By plugging the adiabatic
approximation of the variance into the time evolution of μt, we arrive
at Eq. (2) of the main text (see Supplementary Note 2, Section 3.4 for
the derivation).

M-step. Using the posterior from the E-step, motion strengths, λ, are
optimized to maximize the likelihood of the observed velocities. This
optimization further incorporates prior distributions, pðλ2mÞ, most
conveniently formulated over the squaredmotion strengths, forwhich
we employ a scaled inverse chi-squared distribution,

pðλ2mÞ= Iχ
�
λ2m ; νm, κ

2
m

�
=

1

λð2 + νmÞm

exp � νmκ
2
m

2 λ2m
� A

�
νm, κ

2
m

�" #
, ð6Þ

owing to its conjugacy to estimating the variance of sm (this is what λ2m
controls). The prior features two hyper-parameters, νm and κ2

m, which
give rise to an intuitive interpretation as νm pseudo-observations of
average value κ2

m. The partition function, Aðνm, κ2
mÞ, only serves for

normalization. By default, we employ a Jeffreys prior (νm = κ2
m =0),

which is a typical choice as a non-informative prior in Bayesian
statistics and promotes a preference for finding simple structures by
assigning higher beliefs to small values of λm (and highest to λm =0).
Theonly exception is themotion strength assigned to selfmotion, λself,
for which we employ a uniform prior distribution, formally by setting
νself = − 2 and κ2

self = 0. These choices reflect the a-priori belief that
motion components supported by C will usually be absent or small in
any given scene—with the exception of self-motion-induced velocity
on the retina, which occurs with every saccade and every turn of the
agent’s head (see Supplementary Note 2, Section 1.2 for the formal
calculation of the M-step).

In the online formulation of EM (see Supplementary Note 2, Sec-
tions 2.3 and 3.4 for the derivation of the online EM algorithm and of
the online adiabatic inference algorithm which constitutes our model,
respectively), these priors give rise to the low-pass filtering dynamics

in Eq. (1) for updating λ2m, with constants

αm =
2

τs2 ð2 + νm + τλ=τsÞ
, and ð7Þ

βm =
νm κ2

m

τλ ð2 + νm + τλ=τsÞ
: ð8Þ

This completes the derivation of the onlinemodel forD = 1 spatial
dimensions. The extension to multiple dimensions is straightforward
and provided in Supplementary Note 2, Sections 1.3, 2.3 and 3.4
alongside the respective derivations.

Preference for simple structures. The above Jeffreys prior onmotion
strengths, pðλ2mÞ, facilitates the discovery of sparse structures. This
property is important when a large reservoir of possible motion
components in C is considered: the model will recruit only a small
number of components from the reservoir. In Supplementary Fig. 2, we
demonstrate this ability for the example of the Johansson experiment
from Fig. 2b–d by duplicating the shared motion component, i.e., the
first two columns in C are all 1’s. As Supplementary Fig. 2 shows, the
model recruits only one of the two identical components and discards
the other. This example of identical components in the reservoir
represents the theoretically hardest scenario for maintaining a sparse
structure.

Computer simulations
Computer simulations and data analysis were performed with custom
Python code (Python 3.8, Numpy 1.21, Scipy 1.7, scikit-learn 0.24,
Matplotlib 3.4, Pandas 1.3, xarray 0.19). The code has been published
on GitHub88 and supports most of the extensions presented in Sup-
plementary Note 3.

For the numerical simulation, input was drawn with observation
noise variance σ2

obs=δt, at the time points of input frames (every δt).
Thedrawn input remained stableuntil the next frame. Between frames,
the differential equations for online hierarchical inference were inte-
grated with SciPy’s explicit Runge-Kutta method RK45 which adapts
the step size. This integration method combines numerical accuracy
with a parameterization that is almost invariant to the input frame rate.
The default parameters that we used are listed in Table 1. The data
shown in the figures is provided in a supplementary source data file.

Hierarchical motion experiments (Fig. 2)
For the Johansson experiment, all K = 3 dots followed sinusoidal velo-
cities with frequency 0.5Hz. Horizontal amplitudes were 2

ffiffiffiffiffi
τs

p
for all

dots; vertical amplitudes were 0 for the outer dots and cosð45�Þ � 2 ffiffiffiffiffi
τs

p
for the inner dot. For the Duncker wheel, we set the wheel radius to
R = 1 and the rotation frequency to 1 Hz. This leads to the hub velocity

Table 1 | Default parameters of the computer simulations

Description Variable Object-indexed Location-indexed Network

Time const. motion sources τs 0.300 s 0.100 s 0.100 s

Time const. motion strengths τλ 1.000 s 0.333 s 0.333 s

Inv. observation frame rate δt 1/60 s 1/60 s 1/120 s

Observation noise σobs 0.05 0.017 = 0.05 ÷ 3 0.017

Initial motion strength λm(t = 0) 0.5 0.5 0.5

No. of pseudo observation νm 0 0/−1 0

Val. of pseudo observations κm 0 0 0

Vestibular input vvst – 0 –

Obs. noise for vestibular input σvst – 0.05 –

Time const. for pred. err. τϵ – – 0.050 s

Most parameters are maintained throughout all computer experiments. Deviations from these parameters are listed in the respective experiment description. The value νm = − 1 in location-indexed
experiments relates to self-motion. For D = 2 spatial dimensions, νself = − 2/D = − 1 yields a uniform prior distribution (see Supplementary Note 2, Section 1.3).
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vhub, y = 0 and vhub, x = 2π s−1 because the hub must travel 2πR during
one period for slip-free rolling. For the rim velocities, being the deri-
vatives of location, we thus find vrim,x = vhub,x +Rω cosðω tÞ and
vrim,y = �Rω sinðω tÞ, with ω = 2π s−1. For the simulation, we increased
the observation noise to σobs = 0.15 and set λm(t = 0) = 0.1 to highlight
the gradual discovery of the motion components.

Structure classification (Fig. 3)
The stimulus data and human responses were released by Yang et al.17

on GitHub. The experiment is described in detail in ref. 17. There were
12 participants with each participant performing 200 trials. Each trial
consisted of three dots moving on a circle for 4 s. Dots had different
colors to prevent their confusion, but colors did not convey any
information on the dots’ roles within the structure. No data was
excluded. Trials were generated stochastically from the same gen-
erative model that is considered in this work, with uniform probability
for each of the four structures (Independent, Global, Clustered, Hier-
archical) to underlie the trial. Motion strengths were chosen such that
all dots had identical marginal velocity distributions, p(vk), across all
structures—leaving motion relations as the only distinguishing infor-
mation (see ref. 17, for detailed stimulus parameters and λ-values of all
structures). Like Yang et al.17, we treated the experiment as one-
dimensional (D = 1), operating directly on the angular velocities. Noise-
free angular velocities were calculated from the circular distance of
subsequent stimulus frames, and we set 1/δt = 50Hz to match the
experiment’s frame rate.

For presenting the trials to our online inference model, we initi-
alized each of the λm at its average value (average taken across the
ground truth of all structures). At trial end, the model yielded M = 7-
dimensional λ-vectors associated with 1 shared component, 3 cluster
components (one per possible pair), and 3 individual components (see
Supplementary Fig. 3 for example trials). For logistic regression, we
calculated 5 features, Ti, from λ, namely:

T 1 = λ1=
P
m
λm Does sharedmotion standout?

T2 = maxfλ2, λ3, λ4g=
P

m= 2,3,4
λm Doesone cluster dominate the others?

T3 = maxfλ5, λ6, λ7g=
P

m= 5,6,7
λm Doesone individual component standout?

T4 = λ
2
c=

P
m= c, Ch1ðcÞ, Ch2ðcÞ

λ2m with c= argmaxðλ2, λ3, λ4Þ Does the strongest cluster dominate its children?

T5 = λ
2
c=

P
m= c,:ChðcÞ

λ2m with c= argmaxðλ2, λ3, λ4Þ Does the strongest cluster dominate the 3rddot?

ð9Þ

Here, Ch1,2(c) denote the individual motion components of the two
dots within the cluster component c, and ¬Ch(c) denotes the dot not
being in cluster c. The features were hand-designed based on the
reasoning that they may be useful for structure classification. Their
most important property is that all information about a trial is
conveyed through λ as a bottleneck. A multinomial logistic regression
classifier was trained with L1-regularization on the feature vectors,
(T1, . . , T5), to classify the ground truth structures of the trials. Then, we
fitted the same choice model as ref. 17 to the human choices, but
replaced the ideal observer log-probability, logp S ∣ v0:T

� �
, which was

used in ref. 17, with the class probability from the trained classifier,
logp S ∣ λð Þ:

Pðchoice = SÞ=πL
1
4
+ ð1� πLÞ exp β logp S ∣ λð Þ+ bS

� �� �
=Norm:, ð10Þ

with lapse probability, πL, inverse temperature, β, and biases, bS, for all
structures, S =G, C, H, relative to the independent structure (bI =0 by
convention). Note that, in contrast to ref. 17, we do not need to con-
sider structure multiplicities here because the features are already
symmetric with regard to the three possible cluster assignments.
Like ref. 17, we did not apply observation noise to the presented
velocities, but maintained a non-zero observation noise parameter,

σobs, for the inference. Observation noise, σobs, and lapse probability,
πL, were shared parameters for all participants and were fitted jointly
via a simple grid search. We obtained σobs = 0.04 and πL = 4%
(compared to 14% in ref. 17). The remaining 4 parameters, {β, bG, bC,
bH}, were fitted via maximum likelihood for each participant. All
reported confusion matrices and log-likelihoods were obtained by
fitting the 4 per-participant parameters using leave-one-out cross-
validation. The log-chance level in Fig. 3f is 200 � logð1=4Þ since each
participant performed 200 trials.

Location-indexed experiments (Figs. 4–6)
To support self-motion, we introduce a column of −1’s in C as an
additional component, which is connected to all visual velocity inputs
and to a vestibular input vvst. In our simulations, the vestibular input is
always stationary, but noisy: vvst ∼N 0,σ2

vst

� �
. The associated self-

motion strength, λself, uses a uniform prior (see discussion under
Eq. (6)). Perceived velocities are the sum over all-except-self-motion:
vperceived =∑m≠selfC *mμm.

Motion-direction-repulsion (MDR) experiments (Fig. 4)
In the MDR experiments with two RDKs, input was modeled as K = 3
velocities: two for the two groups of dots, plus the vestibular input.
Repulsion angleswere estimated from20 repetitions of 30 s long trials,
with vperceived averaged over the last 10 s of each trial. Error bars from
the simulations were too small to be shown in Fig. 4e–g.

In Fig. 4e, the velocities for opening angle, γ, were given by
ðvx , vyÞ= v0 � ðcosðγ=2Þ, sinðγ=2ÞÞ for the first group, with v0 = 2

ffiffiffiffiffi
τs

p
,

and v0 � ðcosðγ=2Þ, �sinðγ=2ÞÞ for the second group. As in Fig. 3 of ref.
36, the repulsion bias was measured with respect to the full
opening angle.

In Fig. 4f, increasing contrast of the second groupwasmodeled as
dividing the observation noise variance by a factor, f, between 0.001
and 10, leading to variance σ2

obs=f for this group’s input. As in ref. 37,
the repulsion bias was measured only with respect to the first group’s
perceived direction. The expressed similarity to experimental data
refers to the “2-motion condition” in Fig. 7 of ref. 37.

In Fig. 4g, the velocity of the second group was multiplied by a
factor between 0 and 2, and the repulsion bias was measured only
with respect to the first group’s perceived direction. For a 60°
opening angle, we qualitatively replicate the experimental data
from Fig. 2a, b in ref. 38. In order to maintain the simulation
parameters from previous conditions, we did not attempt to
quantitatively match the speed of targets and distractors in ref. 38.
A direct quantitative comparison to the human data from Fig. 4b in
ref. 36 is difficult because they had measured the point of sub-
jective equality (PSE) to a 90° opening angle for this stimulus
condition, finding a 10° bias for the full opening angle.

For the Takemura experiment39 in Fig. 4h–l, we used K = 5 inputs:
two inner RDKs, two outer RDKs, and the vestibular signal, which were
organized in the motion tree shown in Supplementary Fig. 5a. If not
mentioned otherwise, the simulation parameters matched those from
the basic MDR experiment in Fig. 4e. The inner stimuli had vx = ± v0,
and vy = v0 if non-zero. The outer stimuli had vx =0, and vy = ± v0. The
standard deviation of the observation noise of the outer RDKs was
divided by factor 6, reflecting that in ref. 39 the outer RDKs covered a
three-times larger area and had twice the dot density of the inner
RDKs. Each histogram is based on 200 trial repetitions, which use
identical initial conditions but different realizations of observation
noise, with perceived velocities measured at trial end. The conditions
in panels Fig. 4h–l correspond to figure panels 4a, 4b, 6 left, 6 center, 6
right, in ref. 39. Besides transparent motion (i.e., two perceived velo-
cities), Takemura et al. reported also coherent motion (i.e., only one
perceived velocity) for the inner RDKs in a fraction of trials. In our
computer simulations, we focused only on the biased perception of
two velocities.
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Lorenceau illusion (Fig. 5)
For the Lorenceau illusion, we modeled each dot’s velocity as a sepa-
rate input owing to the spatially distributed nature of the stimulus. As
in ref. 42, the two groups of 10 dots each oscillated at a frequency of
0.83Hz. For the oscillation amplitude, we chose R = 1/2 (arbitrary
units), leading to velocities vxðtÞ=Rω cosðω tÞ for thehorizontal group
and vyðtÞ= �Rω sinðω tÞ for the vertical group,withω = 2π ⋅0.83 s−1. As
shown in Supplementary Fig. 6, the model decomposes this stimulus
into a deeply nested structure comprising self-, shared-, group-, and
individual motion. For the noise-free stimulus condition, we used the
default simulation parameters. For the condition with motion noise,
the observation noise, σobs, of the visual inputs (not the vestibular
input) was multiplied by 25.

Structure-from-motion (SfM) experiments (Fig. 6)
We treat SfM as a location-indexed experiment owing to experimental
findings50,52. For computer simulations, we model each cylinder as a
ring in the x-z-plane, conflating its height into one receptive field (the
simulations still run in 2D with x- and y-dimensions being modeled).
The outer cylinder had radius R = 1.5, and the inner, if present, R = 1.0.
Normal rotation speed was 90°/s, and fast speed was 135°/s. Velocities
were observed at seven equidistant receptive field locations along the
x-axis, xRF∈ {1.2, 0.8, 0.4,…, −1.2}. These correspond to angles, φk, on
the cylinders via xRF =R cosðφkÞ with the inner cylinder covering only
five RF locations (cf. Fig. 6b). When presenting velocity observations,
vk, each RF location xRF hadmultiple overlapping vk (2 for one cylinder,
4 for nested cylinders where they overlapped). The observation noise
for velocity inputs, σobs, was multiplied by 20 for the single cylinder-
condition and by 30 for the nested cylinders-conditions, reflecting the
high local ambiguitywhenmeasuringmultiple overlapping speeds and
directions89. For consistency with other simulations, we provided a
vestibular input with the same parameters as in previous location-
indexed experiments, although this signal plays no computational role
in the SfM simulations.

The model’s component matrix, C, comprised translational
self-motion, rotational motions for the outer cylinder, the inner
cylinder (only in nested conditions), and shared for both cylinders
(only in nested conditions), as well as translational individual
components for each vk (see Fig. 6c, g). Rotational motion is natu-
rally covered by our model as presented in Radial and rotational
motion sources earlier in Methods and sketched in Fig. 6b. To solve
the correspondence problem of overlapping vk, we devised the
following assignment process. At every integration time step, δt,
and for every RF location, xRF, keep the previous assignment with
probability 0.7, and continue to the next xRF. Else, that is if the
assignment is re-evaluated, calculate the Euclidean distance
between the model’s expected velocities, C μt, and the observed
velocities, Pj vt, for all permutations, Pj, of the overlapping inputs
within this RF. Then choose the assignment, Pj, that minimizes the
Euclidean distance, i.e., the local prediction error, ϵt, within the RF.
Once all xRF were processed in this manner, perform the integration
of ∂tμt according to Eq. (2) using the assigned permutations of vt.
This completes the model for SfM perception. We note that, since
the integration is performed only after all RF assignments have been
made, the resulting global assignment process is independent of
the order of iterating over the RFs and could, in principle, be per-
formed in parallel and continuous time. The fact that all computa-
tions are spatially confined to information within each RF further
improves the process’s biological plausibility.

For obtaining the switching distribution in Fig. 6e, weperformed a
10,000 s long simulation and followed ideas from ref. 90: first we
identified a perceptual threshold as the mode of f∣μrot

t ∣8 tg (the exact
value is actually not important). Then we defined two possible per-
cepts which correspond to positive (negative) values of μrot

t . A per-
ceptual switch occurred whenever μrot

t crossed the negative (positive)

threshold of the other percept. The Gamma distribution was fitted by
maximum likelihood.

Network implementation (Fig. 7)
A detailed derivation of how to implement the online hierarchical
inference model in a neural network model is provided in Supple-
mentary Note 4. In the following, we will focus on the specific model
parameters used in the simulations of Fig. 7.

For both simulations (the demonstration in Fig. 7e–j and the
proposed experiment in Fig. 7k–m), there were K = 6 location-indexed
input variables in D = 2 spatial dimensions. Input was encoded
according to the model of area MT presented in Supplementary
Note 4, Section 6. Eachvelocity, vk, was encodedby a population of 192
neurons, with tuning centers organized on a polar grid with Nα = 16
preferred directions, and Nρ = 12 preferred speeds (sketched in Fig. 7c
for smaller values of Nα and Nρ). Each neuron in each of the K popu-
lations thus has coordinates (nα, nρ) describing its preferred direction
and speed. To account for the reported bias ofMT tuning toward slow
speed67, the density of preferred speeds became sparser for higher
speeds, which we modeled in Supplementary Note 4, Eq. (70) by
μρðnρÞ= ρmin +dρ n

1:25
ρ , with dρ = ðρmax � ρminÞ=ðNρ � 1Þ1:25, and

ρmin =0:1, ρmax = 8:0, for neurons nρ = 0, . . ,Nρ − 1. Preferred directions
covered the circle equidistantly. The remaining parameters in the
tuning function were κα = 1/0.352 and σ2

ρ =0:35
2 for the angular and

radial tuning widths, respectively, and ψ =0.1 Hz for the overall firing
rate scaling factor. For the network simulations, we increased the
frame rate to δt = 1/120Hz for the sake of a higher sampling rate on the
x-axis in Fig. 7h–j (the simulation software stores firing rates only at the
time of frames).

The distributed population comprised 100 neurons. Readout
vectors, ax, for all variables represented by this populationwere drawn
i.i.d. from a standard normal distribution, N 0, 1ð Þ, for each vector
element. Adjoint matrices were calculated numerically to fulfill the
required orthonormality conditions (see Supplementary Note 4, Sec-
tion 4). The low-pass filtering time constant of the prediction error was
τϵ = τs/2 = 0.050 s, such that theprediction error could react to changes
in μt.

The one-to-one population comprised M neurons (or small
populations; M = 8 for the demo, and M = 7 for the proposed experi-
ment), one per function value, f Σðλ2mÞ. The proportionality constant for
the readout was f Σðλ2mÞ=0:001 r1�to�1,m.

Given the parameters and decoding vectors, the simulation soft-
ware automatically transforms the differential equations of the online
inferencemodel into the corresponding neural dynamics, according to
the rules stated in Supplementary Note 4, Section 4. Numerical inte-
gration of neural dynamics was performed by the same RK45 method
used in the previous simulations.

For the demonstration in Fig. 7e–j, inputs were arranged on a ring
of radius Rk = 1 with angular location ϑk = 60° ⋅ k (measured from the
x-axis in counter-clockwise direction). Presented velocities were
ðvx , vyÞ= ð�2 sinðϑkÞ, 2 cosðϑkÞÞ for t ≤ 1 s, ð2 sinðϑkÞ, � 2 cosðϑkÞÞ for
1 s < t ≤ 2 s, and ð2 + 2 sinðϑkÞ, � 2 cosðϑkÞÞ for 2 s < t. In the C-matrix
underlying the network construction, the shared polar visual compo-
nent was constructed according to Supplementary Note 1, Eq. (6). The
shared translational and the 6 individual components were Cartesian.

In the proposed experiment in Fig. 7k–m, all motion compo-
nents and the input were Cartesian such that input location played no
role (formally, we maintained the circular arrangement of the pre-
vious network simulation). Input was generated from the model’s
underlying generative model for a motion tree comprising 1 shared
component and 6 individual components. For a given fraction of
sharedmotion, q, we set λ2shared = 2

2 q and λ2ind = 2
2 ð1� qÞ. Maintaining

constant total squaredmotion strength, λ2shared + λ
2
ind = 4, ensures that

the (marginal) input velocity distributions are statistically identical
across all input locations and all values of q. In total, seven fractions,
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q = 1/8, 2/8, . . , 7/8, of shared motion were presented. Per simulation
run, each fraction was presented for 10 s, and simulations were
repeated for 10 runs. For the subsequent data analysis, the neural
responses of only the 2nd half (5 s ≤ t) of the stimulus presentation
were considered to avoid potential initial transients. A standard lin-
ear regression model (with intercept; class sklearn.li-
near_model.LinearRegression) was trained to decode the
correct q from the distributed population’s response, rdis, for the
fractions q = 1/8 and q = 7/8. The resulting linear readout (with
intercept) was employed to decode q from rdis for the remaining
stimuli in Fig. 7m.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new experiment data was produced for this study. The behavioral
data from ref. 17 is available with the original publication. The beha-
vioral data for ref. 36 has been digitized by the authors and is included
in the software repository: https://github.com/DrugowitschLab/
structure-in-motion/blob/main/data/data_Braddick_2002_Fig3C.
txt. Source data are provided with this paper.

Code availability
Computer simulations, data analyses and visualization have been
performed with custom Python code which has been released88 under
the BSD 3-clause license and is available online: https://github.com/
DrugowitschLab/structure-in-motion.
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