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In the real world, complex dynamic scenes often arise from the
composition of simpler parts. The visual system exploits this struc-
ture by hierarchically decomposing dynamic scenes: When we see
a person walking on a train or an animal running in a herd, we
recognize the individual’s movement as nested within a reference
frame that is, itself, moving. Despite its ubiquity, surprisingly lit-
tle is understood about the computations underlying hierarchical
motion perception. To address this gap, we developed a class of
stimuli that grant tight control over statistical relations among
object velocities in dynamic scenes. We first demonstrate that
structured motion stimuli benefit human multiple object tracking
performance. Computational analysis revealed that the perfor-
mance gain is best explained by human participants making use
of motion relations during tracking. A second experiment, using a
motion prediction task, reinforced this conclusion and provided
fine-grained information about how the visual system flexibly
exploits motion structure.

motion perception | hierarchical structure | multiple object tracking |
generative models | Bayesian inference

The visual scenes our brains perceive in everyday life are
filled with complex dynamics. Information hitting the retina

changes not only with every motion in the scene but also with
every head movement and saccade. Noise, occlusions, and ambi-
guities further make visual information inherently unreliable. In
order to maintain stable, coherent percepts in the face of com-
plex and unreliable inputs, our brains exploit the spatially and
temporally structured nature of the environment (1).

Motion structure refers to statistical relations of velocities.
One form of structure common in natural scenes is motion
grouping: When a rigid object is set in motion, all of its visual
features move coherently. This structure allows us to infer the
existence of objects based on the coherent motion of features—
the Gestalt grouping cue known as common fate (2). Grouping
based on common fate has been shown to influence our abil-
ity to track objects (3–6), to search displays (7), and to store
information in short-term memory (8).

However, the strict definition of common fate is too brit-
tle to accommodate natural scenes in which visual features do
not move together rigidly and yet are still grouped together. In
some cases, this is because we perceive objects as deforming
nonrigidly. In other cases, we perceive objects that are hierar-
chically structured (9–11): The parts of an object move rigidly
relative to a reference frame (the object), which itself could be
a rigidly moving part of another object, and so on. For exam-
ple, we perceive the motion of hands relative to the motion
of arms, and the motion of arms relative to the motion of the
torso (Fig. 1 A and B). The entire body may be moving rel-
ative to another reference frame (a train or escalator). The
perception of hierarchically organized motion suggests a power-
ful “divide-and-conquer” strategy for parsing complex dynamic
scenes.

Recent work has formalized the representation and discovery
of hierarchical motion structures (10). However, we still know
relatively little about whether and how the visual system exploits

this structure for visual tasks like object tracking. We address
this question in two experiments, one testing multiple object
tracking (MOT) (12) and one testing multiple object trajectory
prediction. A key innovation of these experiments is the use of
tightly controlled stimuli that isolate the signatures of hierarchi-
cal structure from other forms of motion structure. We show that
a Bayesian observer model, when equipped with the appropri-
ate structural representation, can provide insight into the mental
computations underlying human behavior across a variety of
motion structures. In the MOT task, we find that improvement of
tracking performance for structured stimuli cannot be explained
without exploiting structure knowledge during inference, indi-
cating that humans make use of motion structure knowledge
when perceiving dynamic scenes. In the prediction task, we
uncover the employed motion structure knowledge of our partic-
ipants, finding that humans can flexibly recruit different motion
relations for scene parsing, including deep motion hierarchies
which nest groups of objects within another moving reference
frame.

Results
The study was preregistered (13) prior to data collection. All pre-
registered analyses are presented in the main text; any additional
analyses are labeled as such.

Significance

The structured organization of motion in visual scenes is
highly informative for our everyday perception: We recognize
people by the way they walk, track objects through occlu-
sion, or predict hazardous situations from the traffic flow.
It is, however, unclear how our minds tame the overwhelm-
ingly complex stream of dynamic information received by
the retina to form such stable percepts. We argue that an
observer can exploit a “divide-and-conquer” strategy where
complex motion relations are broken down into compositions
of simpler motions. Evidence for hierarchical decomposition
comes from multiple object tracking and prediction experi-
ments in which humans are able to exploit motion structure
knowledge to improve performance. Our results can guide
neuroscience experiments on the neural representation of
structure.
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Representation of Motion Structure. In this section, we introduce a
representation of hierarchical motion structure. To motivate this
representation, consider a flock of birds. The velocities of indi-
vidual animals in the flock are naturally described by the sum of
a global motion component, which is shared across all birds, and
an individual component for each animal relative to the flock’s
velocity. Only the aggregate motion is observed; the underlying
motion components are latent variables that help us organize our
perception.

To formalize the idea of shared, latent motion components,
we assume all velocities in a visual scene to be driven by motion
sources (nodes in the graph in Fig. 1C) that either represent
observable objects (filled orange nodes) or are latent (unfilled
gray nodes). A motion source inherits velocity from a parent
source when connected by an edge, thus supporting tree-like
hierarchies. Motion sources can be shared by multiple objects,
and the total velocity of an object is the sum of all inherited
motions. In addition to the graph connectivity, each motion
source has a motion strength λ that determines the source’s con-
tribution strength to the speed of dependent observable objects.
The simple “global motion” motif in Fig. 1C might, for exam-
ple, to a first order, describe the motion structure underlying
a flock of birds, where larger motion strengths are illustrated
by larger vertical distances (curly braces) between the motion
sources.

The separation of motion composition (graph connectivity)
and motion strength (vertical node location) gives rise to a flexi-
ble, modular representation of motion structure, covering many
real-world scenes such as independent motion, clustered motion,
or deep motion hierarchies. The graph in Fig. 1 D, Top, for
example, describes a faster orange and a slower green cluster
of otherwise independently moving composed objects (e.g., two
noninteracting flocks of birds). A further global motion com-
ponent, such as an observer moving his head, would introduce
another motion source at the root of the tree (Fig. 1 D, Bot-
tom). This illustrates how our motion representation can be used
in a modular fashion to describe deep nested motion hierar-
chies. In fact, any tree-like motion structure built in this way
can be represented by a motion structure matrix L, accommodat-
ing both composition and strengths (see Materials and Methods),
such that we will often refer to specific motion structures by their
associated matrices L.

This modular representation enabled us to generate motion-
structured visual stimuli, which isolated the computational role

A B C

E

D

Fig. 1. Modular representation of hierarchical motion structure. (A)
Observed velocity components of a running human. The hands inherit
motion from the arms, which inherit motion from the torso. (B) Corre-
sponding nested hierarchy of motion relations. Observed velocity is the sum
of local motion components. (C) Motion graph describing global motion
with a strong (strength λglo) shared motion source (gray node) and weaker
(strength λind) individual motion sources (orange nodes). Here, the global
motion source is not directly observed (i.e., latent) but introduces correla-
tions in the motion of observable objects (orange). (D) Two motion clusters
(Top) can be embedded into a deep hierarchy by adding another latent
motion source at the tree’s root (Bottom). (E) Illustration of a stimulus of
stochastically rotating dots with global motion structure. These are the class
of stimuli used in the experiments.

of motion structure in dynamic visual scenes, and were thus
particularly suited for psychophysics experiments. Specifically,
we strove to design stimuli in which all object properties and
statistical relations among objects were dominated by struc-
ture in velocities, while keeping other factors like individual
object velocities or spatial structure uninformative. To do so,
we generated the velocities of observable objects by random
draws from a continuous time stochastic process [namely, a
multivariate Ornstein–Uhlenbeck process (14); see Materials
and Methods for details] that yielded smooth random trajec-
tories with the desired statistical motion relations imposed by
a chosen motion structure L. In this process, motion sources
play the role of random forces which accelerate or decelerate
any dependent object. For example, the latent global source
in Fig. 1C would induce correlations among the velocities of
all observed objects. The resulting trajectories are mathemati-
cally tractable and feature real-world properties, such as inertia
and friction, without making any assumptions about specific tra-
jectory realizations. To further remove any persistent spatial
structure among the objects’ locations, stimuli were positioned
on a circle (illustrated in Fig. 1E; Movies S1–S3). This makes the
locations of objects asymptotically independent. The mathemat-
ical tractability of the trajectory-generating process was crucial
for precise stimulus control. Knowing the exact joint proba-
bility distribution across object velocities allowed us to vary
velocity correlations induced by motion structure while keeping
the motion velocity statistics of individual objects unchanged,
thus making structure in velocities the dominant feature in the
presented scenes.

Motion Structure Improves Visual Tracking Performance. We first
asked whether motion structure knowledge benefits humans in
an MOT task (12). Evidence exists that structure among objects,
such as grouping (15), symmetry (6), or global translation (4),
impacts tracking performance, but hierarchical structure has not
been investigated before.

In the MOT task, K = 7 dots rotated about a circle with three
dots being initially marked as targets. After a few seconds, all
dots changed to identical appearance while dot motion contin-
ued for another 6 s. After that, the dot motion stopped, and
participants had to reidentify the initially marked targets. We
tested 20 participants on four different blocked motion condi-
tions of 30 trials each, with motion graphs shown in Fig. 2A
(targets marked by ?; Movies S1 and S2). Independent (IND)
motion, the standard MOT task, served as a baseline. In the
global (GLO) condition, dot motion is composed of a dominat-
ing shared stochastic motion source, as well as small individual
per-dot motion sources to break emergent spatial patterns. In
counterrotating (CNT) motion, the latent motion source affects
dot velocities in opposite directions: Similar to gears, the force
accelerating the dots k = 1, 2, 3 in one direction accelerates dots
k = 4, 5, 6, 7 (three of which are targets) in the reverse direction.
The last motion condition is a counterrotating deep hierarchy
(CDH) in which two three-dot groups are driven by a counter-
rotating motion source that shares a global motion source with
the seventh dot. This deep nested structure generates distin-
guishable velocity patterns that cannot be approximated by any
shallow (at most one latent source layer) motion structure. In
the CDH condition, we tested two different target sets (CDH1
and CDH2) to probe set-specific effects in tracking performance.
We measured participant performance as the average number of
correctly identified targets within each condition. Since the aim
of the experiment was to test how humans can exploit motion
structure knowledge rather than learn it, at the beginning of
each motion block, participants were explicitly presented with
a diagram and three demonstration trials of the motion struc-
ture that would be presented in the upcoming block. Overall
average stimulus speed was titrated on a per-participant basis to
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Fig. 2. Use of motion structure knowledge during MOT. (A) Tested motion
conditions included IND, GLO, CNT, and CDH motion; ?s mark targets.
Two different target sets were tested for CDH motion. (B) Average per-
formance (number of correctly identified targets) on different motion
conditions by human participants, the Bayesian computational observer
model using the correct motion structure, and the Bayesian computa-
tional observer model disregarding motion relations (IND prior). Using
motion structure during inference is required to explain human perfor-
mance gains on motion-structured stimuli. (C) The observer model consists
of a Kalman filter with motion structure prior L (Left) and a mental assign-
ment of dot identities (Center). Perceptual and neural noise can lead to
ambiguous assignments and, ultimately, errors in the reported target set
(Right). (D) Fraction of trials with zero, one, two, and three dots correct
(red, orange, light green, and dark green, respectively) for human partic-
ipants, the observer model with the correct motion prior, and the model
with an IND prior.

approximately reach a performance of 2.15 [midpoint between
chance level (3×3/7) and perfect (3)] correctly identified dots
in the IND condition. This per-participant speed level was sub-
sequently maintained for the rest of the experiment. During the
following data collection, the marginal motion statistics of indi-
vidual dots were then held constant for each participant across
all conditions L and dots k such that conditions only differed
in their dot velocity correlations, as determined by L. A sep-
arate IND condition block (see left-most bar in Fig. 2B) that
was not used to adjust the stimulus speed confirmed the valid-
ity of the adjustment and marks the reference for performance
changes in motion-structured stimulus conditions. The perfor-
mance on the four conditions with motion structure (GLO,
CNT, CDH1, and CDH2) is shown in Fig. 2 B, Left next to
the IND reference performance. The introduction of structured
motion significantly impacted dot tracking performance (p≈
1.03× 10−14, Greenhouse–Geisser corrected repeated measures
ANOVA), resulting in a significant performance boost in all
motion conditions (one-sided paired t tests, p≈ 1.2× 10−8,
2.4× 10−9, 7.9× 10−3, and 2.6× 10−4; see SI Appendix, Fig.
S1 for additional pairwise comparison of all conditions). In

conclusion, motion structure clearly improved human tracking
performance.

Use of Structure Drives MOT Performance Gain. The observed boost
in tracking performance for structured stimuli could simply be
a byproduct of dot velocity correlations, that is, an intrinsic
stimulus property, rather than the result of using motion struc-
ture knowledge by the observer. For instance, the paths of dots
with positively correlated velocities might cross less frequently
during a trial, making their confusion less likely (16). To distin-
guish the contribution of employed motion structure knowledge
from stimulus-intrinsic factors, we extended a Bayesian MOT
observer model by Vul et al. (17) to incorporate motion structure
priors L. The deliberately simple model (illustrated in Fig. 2C)
includes only the core components required to perform the
MOT task, making it a minimalistic, normative model of motion-
structured MOT (see Materials and Methods for details). Similar
to Vul et al. (17), visible dot locations xt in individual video
frames are subject to perceptual and neural noise σobs while
being integrated with mental estimates of location zt and veloc-
ity vt via a multidimensional Kalman filter (Fig. 2 C, Left). To
capture structured motion, we extended this Kalman filter to
incorporate the motion structure matrix L as a Bayesian prior dis-
tribution of how dot velocities are expected to evolve over time.
A GLO motion prior, for example, would favor positively corre-
lated dot trajectories. The Kalman filter alone, however, assumes
that every observed dot location is labeled by the dot’s iden-
tity, making dot confusions, and therefore imperfect dot tracking,
impossible. To produce such confusion, we needed to addition-
ally model the mental assignment of dot identities to the visually
identical looking dots on the screen (Fig. 2 C, Center; cf. ref.
17), which is a manifestation of the correspondence problem
(18, 19). Errors in this mental assignment can lead to imperfect
reidentification of the target dots at the end of an MOT trial,
and arise when dots come close (20) or even cross: Uncertainty
in internal location estimates zt can render multiple mental
assignments possible, as exemplified in Fig. 2 C, Right. Since
the Bayesian model is derived solely from computational con-
siderations for solving MOT and disregards any psychophysical
constraints, for example, velocity-dependent observation noise
(21), we refer to it in what follows as the computational observer
model.

We presented the computational observer model with the
exact same trials that had been shown to human participants.
The single free parameter of the model, σobs, was adjusted to
match average human performance in the baseline IND motion
condition, and was subsequently fixed to predict performance in
all other conditions. This resulted in a qualitative match between
human performance and the observer model’s predictions (Fig. 2
B, Left vs. Center). Besides the motion structure dependence,
the observer also correctly predicted the increased performance
for the nonsplit target set (CDH2) over the split set (CDH1).
For a discussion of the quantitative mismatch in the GLO
condition, see Probing Components of Human Object Tracking
and SI Appendix.

More importantly, the computational observer allowed us to
distinguish whether the performance gain for structured motion
stimuli was simply due to stimulus-intrinsic factors: If some
motion structures were generally easier to track than others,
the computational observer should be able to take advantage
of these differences even without explicitly exploiting the struc-
tural knowledge in its prior. To test this, we repeated the
above procedure with an observer that assumed an IND motion
prior, which respects the correct marginal dot velocities, but
disregards any knowledge on velocity correlations, even when
motion structure was present in the stimuli. As Fig. 2 B, Right
vs. Left reveals, this modification caused all motion structure-
dependent performance gains to vanish. Hence the observed
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performance gain of human participants cannot be explained
by stimulus-intrinsic factors alone. Instead, humans appear to
make use of motion structure knowledge when performing
the task.

The finding that the computational observer with correct
motion prior explains large parts of human responses, while the
motion structure-agnostic observer (IND prior) does not, is fur-
ther supported by comparing the fraction of MOT trials with
zero, one, two, or all three dots identified correctly (Fig. 2D,
additional analysis). This visual impression is corroborated by
preregistered statistical measures: While the cosine similar-
ity between per-participant human and correct-prior observer
model performance gains (“structured condition minus IND
condition”) is highly significant (angle between the performance
gains ^ 42.0◦; p<10−5, one-tailed test against H0: Positive
cosine similarity is a random effect), the one between per-
participant human and IND-prior observer model performance
gains is not (^ 105.3◦; p≈ 0.99).

Probing Components of Human Object Tracking. The modularity
of the Bayesian observer affords insights into the differential
role of different psychophysical constraints impacting MOT per-
formance. Specifically, we examined two alternative observer
models which add/remove components to/from the computa-
tional observer (Fig. 3A; additional analysis; for details, see
Materials and Methods).

1) The momentum-free observer lacks the concept of inertia,
that is, that objects usually change their trajectory smoothly. This
model mirrors the perceptual assumptions from established work
(10) where motion relations give rise to only correlated location
displacements of objects between stimulus frames. We further
removed any observation noise, σobs = 0, to isolate the effect of
inertia for MOT.

2) For the Weber’s law observer, in contrast, we augmented the
computational observer with two key psychophysical constraints
modeled in ref. 17, namely, speed-dependent observation noise
(21) and decision noise (22, 23) in dot assignments.

The MOT performance of both models is shown in Fig. 3B
when either the correct prior or an IND prior are assumed. We
find that the momentum-free observer’s performance drops to
chance level in the IND condition, confirming that the use of
inertia is crucial for performing MOT in the circular task design:
Whenever two dots come close in one frame, they can only be
tracked to the next frame by exploiting the fact that trajectories
continue smoothly. This insight complements previous studies of
two-dimensional motion tracking (17, 24) for which very close
dot proximity was less likely and hence the use of trajectory
extrapolation less critical. In fact, this might have been the rea-
son why previous studies found little evidence of use of inertia in
MOT. However, when structure is present, as seen in the CNT
and CDH conditions, even a momentum-free observer can ben-
efit from motion structure knowledge for partial performance
recovery. Notably, such motion prior-dependent performance
gain is not present when tracking GLO stimuli, pointing to a
peculiarity of this stimulus condition (see SI Appendix, Supple-
mentary Text and Fig. S4 for a computational discussion based
on the dot proximity autocorrelation function). The Weber’s
law observer, on the other hand, benefits from structured pri-
ors in all conditions and predicts human responses better than
the computational observer (^ 35.5◦; see also SI Appendix,
Fig. S2 for trial speed-dependent performance, and see SI
Appendix, Fig. S3 for exact choice sets), underscoring the con-
tribution of known psychophysical constraints to human visual
tracking.

A second direction supported by the Bayesian observer is a
detailed analysis of how well the different models predict the
exact set of dots chosen by human participants (note that these
are additional analyses; SI Appendix). For probing the puta-

A

B

C

Fig. 3. Functional components underlying human MOT. (A) Alternative
observer models with components added to or removed from the com-
putational observer. The “momentum-free observer” lacks the concept
of inertia. The “Weber’s law observer” adds two known psychophysical
constraints: velocity-dependent observation noise and stochastic decision
noise. (B) Average MOT performance on different motion conditions for
the alternative observer models when either the correct motion structure
or an IND prior are assumed (like Fig. 2B). Employing trajectory extrap-
olation is computationally indispensable on the circle, as highlighted by
the momentum-free observer’s performance dropping to chance in the
IND stimulus condition. Adding psychophysical constraints, in contrast,
leads to an improved match with human performance. (C) Bayesian model
comparison of employed motion structure priors based on the exact per-
trial choice sets. Shown are log-likelihood ratios of human choice sets
under different putative motion priors L relative to the true structure
underlying the stimulus. Negative values indicate that the participant’s
behavior was better explained by the correct motion prior. Human par-
ticipants make use of motion structure knowledge during tracking, pre-
sumably employing approximately correctly structured priors. Yet, the lim-
ited information provided by the discrete response sets prevented insight
into the exact structural features used. Each dot represents one partici-
pant per stimulus condition and putative motion prior. Horizontal lines
show mean log-likelihood ratios across participants (values in parenthe-
ses). Asterisks indicate significance of paired t tests (p< 0.05, 0.01, 10−3,
and 10−4 for one, two, three, and four asterisks, respectively; ns, not
significant).

tive use of motion prior L, we used simulations to estimate the
likelihood of choosing a particular set of dots in each trial of
the experiment for observer models with different motion pri-
ors. We then asked how well these simulated likelihoods match
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the participants’ choices. Results of this analysis are shown in
Fig. 3C for the computational observer, and in SI Appendix,
Fig. S3 for the momentum-free and Weber’s law observers.
This analysis confirms the above result that some motion struc-
ture knowledge is employed by human observers, in that an
IND prior explains human responses significantly worse than the
respective correct motion priors. Besides the structures used in
the stimulus conditions, the comparison includes two additional
priors: clustered motion (CLU) and clusters-plus-independent
(CLI) motion. These priors approximate the motion relations
of the CDH condition without considering its nested nature.
This analysis suggests that human participants typically employ
the correct or close-to-correct motion priors, even for nested
structures—yet, the effect size is often too small to make decisive
statements.

In conclusion, the MOT task revealed that humans make use
of motion structure knowledge during visual tasks. However,
the limited information provided by the participants’ responses
(three chosen dots per trial) did not allow us to identify which
exact motion features were employed.

Revealing the Structure of Human Motion Priors. We therefore
developed a second experiment, multiple object prediction (pre-
registered), that grants a more fine-scaled insight into the
cognitive machinery underlying motion perception.

Multiple object prediction uses partially observed dynamic
visual scenes to test human perception in face of uncertainty.
As before, in each trial, seven dots rotated stochastically about
a circle (Fig. 4A). After 5 s, however, two target dots (the
larger green and red dots) became invisible, while the motion
of the other dots remained visible. After another 1.5 s, the
scene froze, at which point participants had to predict the loca-
tion of both target dots with a computer mouse. We used
highly volatile motion-structured stimuli with quickly changing
dot velocities, such that the use of motion structure infor-
mation was indispensable for making predictions. We further
colored the dots according to their role in the motion struc-
ture, to prevent dot confusion. In contrast to previous single-dot
prediction tasks (11), the rationale for simultaneously pre-
dicting two dot locations is that the covariance pattern of
errors conveys additional information about the motion struc-
ture assumptions of our participants. For example, if global
motion was assumed, we would expect the participants to jointly
overestimate or underestimate the red and green targets’ final
locations.

We tested 12 participants on three motion conditions each:
GLO, CLU, and CDH (motion graphs in Fig. 4E; Movie S3),
with 100 trials per condition. As before, participants were briefly
trained on all motion structures and were informed about the
specific structure underlying each trial. Participants reported
the task to be challenging, but performed reasonably well (see
Fig. 4B for the GLO condition, and SI Appendix, Fig. S8 for CLU
and CDH; additional analysis).

In order to identify the structure of the motion prior employed
by each participant in each stimulus condition, we formulated
a Bayesian observer model of human responses in the predic-
tion task. This model was the same as our MOT model, but
without the dot confusion component, and with location obser-
vations assumed to be practically noise-free (σobs = 0, except for
the invisible dots for which no further observations were pro-
vided). The reduced computational complexity of the prediction
task rendered exact inference possible: at the end of each trial,
motion-structured Kalman filters with different putative motion
structure priors L predicted the statistically optimal, most likely
location of the target dots based on the motion of the other dots,
and the uncertainty in this prediction. Building on ref. 22, we
linked this prediction to the locations reported by the partici-
pants by assuming additional response variability that scaled with

prediction uncertainty (correlated across the two target dots),
motor noise (uncorrelated across dots), and the possibility to
confuse the red and green dots when reporting their locations
(see Materials and Methods for details). The first two variability
sources were modeled as Gaussians, owing to the Gaussianity of
observed human response error distributions (SI Appendix, Fig.
S6; additional analysis), whereas the third variability source was
implemented by a small swapping probability. Overall, this led
to three model parameters that we fit by maximum-likelihood
separately for each participant, condition, and putative motion
structure prior. Applied to simulated behavior with the same tri-
als, we found that this procedure was able to correctly recover the
motion structure underlying simulated responses (SI Appendix,
Fig. S7).

To identify the most likely motion structure prior employed by
the participants, we compared, across seven structurally differ-
ent putative motion priors, how well the model can explain the
participants’ trial-by-trial predictions. For the GLO motion con-
dition, the model predictions are shown in Fig. 4 C and D when
assuming a GLO prior (Fig. 4C) or an IND prior (Fig. 4D) for
all 100 trials of one representative participant (see SI Appendix,
Fig. S9 for all participants and stimulus conditions). The visu-
ally apparent better match of the GLO over the IND prior is
statistically quantified by the log-likelihood ratio of the human
responses under the two motion priors (Fig. 4E, highlighted data
point in the top left matrix cell). The resulting log-likelihood
ratios for all motion conditions and priors are shown in Fig. 4E,
with putative motion priors sorted from simpler to more complex
structures (preregistered; see SI Appendix, Fig. S10 for addi-
tional comparison across a larger range of motion structures,
yielding similar results). Note that all compared models have
the same number of free parameters. For the GLO motion con-
dition (Fig. 4 E, Main Panel, top row) human responses are
best explained either by the correct global motion prior or by
more complex priors which would be similarly suited for solv-
ing the task (e.g., because they contain a global motion source).
Motion priors without a global motion source, such as IND,
CNT, and CLI, resulted in significantly worse model fits. For
the CLU motion condition (Fig. 4E, second row), all alterna-
tive model priors led to worse model fits. Together, these results
establish confidence in the applicability of the Bayesian observer
model.

Our most complex motion condition, the CDH (Fig. 4 E,
Main Panel, bottom row), was designed to require inference
over both latent motion sources for correct prediction. In other
words, none of the tested shallow (nonnested) motion priors
can mimic the error covariance pattern expected under a CDH
prior. GLO motion would miss the counterrotating component
of the blue and green groups. CNT motion would miss the global
motion component. A CLI motion prior (Fig. 4 E, Top) could
approximately predict the green dot’s location, but lacks the
global component for predicting the red dot. The only struc-
tures that could approximate a CDH covariance pattern are
other deep nested hierarchies, such as a standard deep hierar-
chy (SDH) that employs a third latent motion source. The result
of Bayesian model comparison (Fig. 4 E, Main Panel, bottom
row) clearly favors deep hierarchical motion priors for explain-
ing human predictions. Overall, our results strongly suggest that
human observers are able to use motion structure, including
hierarchically nested motion relations, when perceiving dynamic
scenes.

Systematic and Stochastic Errors Underlie Human Suboptimality.
Even though participants employed the qualitatively correct
motion structure in the prediction task, they featured additional,
suboptimal variability when compared to a statistically optimal
observer (Fig. 4B). This variability could arise from consistent
deterministic bias, indicating a systematic misintegration of the
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A
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B C D

Fig. 4. Revealing human motion priors in a multiple object prediction task. (A) Illustration of the stimuli. The highlighted green and red dots disappeared
after 5 s. Participants had to predict their location at the end of the trial. Dots were color-coded to indicate their role in the motion structure. Here, a
GLO stimulus condition is illustrated. (B) Mean-squared prediction error of the green and red dots for all participants in the GLO condition. Due to task-
inherent uncertainty, even perfect inference, as given by the mean values of a Kalman filter with the correct motion structure prior, will exhibit nonzero
prediction errors (labeled “Bayes opt.”). Humans do not reach this optimal accuracy, but perform better than chance. (C) Human responses (dots) relative to
the predictions of an observer model with correct GLO prior, in all 100 trials for the participant highlighted in B and E. The fitted observer model (ellipses)
predicts human responses well (ellipses indicate 1, 2, 3 SD). (D) Same as C, but for an observer model assuming an IND motion prior. Neither the predicted
locations nor the covariance in human prediction errors is captured by the model. (E) (Left) Tested motion conditions included GLO, CLU, and CDH motion.
(Top) Putative motion priors tested for explaining human responses via a Bayesian observer model, ordered by their complexity. (Main Panel) Each cell
shows per-participant log-likelihood model fit ratio for a particular motion prior, compared to the correct prior underlying the stimulus (indicated by gray
background). Negative values indicate that the participant’s behavior was better explained by the correct motion prior. Humans flexibly employed correctly
structured motion priors. Each dot represents one participant per stimulus condition and putative motion prior (comparison between C and D highlighted
in orange). Horizontal lines show mean log-likelihood ratios across participants (values in parentheses). Asterisks indicate significance of paired t tests
(p< 10−3, and 10−4, respectively).

stimuli, or stochastic fluctuations, indicating potentially noisy
computations. To determine the contribution of each alterna-
tive to overall variability, we repeated each trial twice within
each condition, supporting a bias–variance decomposition (23)
of this variability (Fig. 5A). Specifically, if all of the variability
was due to deterministic biases, participants should feature the
exact same, systematic errors, ∆(1) = ∆(2), in both trials. If, in
contrast, all variability was purely stochastic, the observed errors
should be uncorrelated across paired trials. This idea allowed
us to quantify the ratio between bias and variance by one noise
factor fnoise per participant and motion condition, with fnoise = 0
and fnoise = 1 denoting purely bias-driven and purely noise-driven
observers, respectively (see Materials and Methods for details).
We evaluated the noise factor separately for the green and red
target dots, with the results shown in Fig. 5B. Note that these
results are additional analyses. We found that human subop-
timality is a combination of systematic and stochastic errors.
The noise factors of both dots were, on average, equally strong
(Fig. 5B, black ×). The positive correlation between red and
green dot noise factors (ρ= 0.51, Pearson correlation) suggests
a participant-dependent level of “noisiness.” This impression
is further supported by consistently higher or lower noise fac-

tors across participants (colors and filling in Fig. 5B; p< 10−4,
one-way Welch’s ANOVA).

Discussion
We have shown that humans make use of motion structure
knowledge during demanding perceptual tasks, and that they can
flexibly employ structured motion priors for the task at hand.
Beyond shallow motion motifs, such as global motion or clus-
tered motion, we were able to show that humans can even use
deep nested motion hierarchies in the prediction task. Key to
revealing the covert motion priors of human participants was the
design of analytically tractable stimuli that capitalize on motion
relations. Analytical tractability facilitated the development of
normative Bayesian observer models, our mathematical scalpel
for dissecting the use of motion priors by the participants from
stimulus-intrinsic contributions to visual motion perception.

Understanding motion perception as Bayesian inference has
a rich scientific history (10, 11, 17, 25–29). Bayesian mod-
els of low-level perception (25–27) were extended to explain
human MOT of independent dot movement (17, 29, 30). Our
work extends this line of research to structured motion, reveal-
ing the use of structured motion priors during tracking. The
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Fig. 5. Bias–variance decomposition for the prediction task. (A) Human
prediction errors are assumed to be the sum of a systematic (bias) and a
stochastic (noise) component. The relative contributions of each component
can be estimated from repetitions of the same trial, leading to responses
ϕ(1) and ϕ(2), and associated errors ∆(1) and ∆(2). (B) Noise factors for the
green and the red dots, one marker per participant (color and filling) and
motion condition (shape). A combination of systematic and stochastic errors
underlies human suboptimality. Black cross and ellipsoids indicate mean and
iso-density curves (1 to 3 SDs) of a bivariate Gaussian fitted to all noise
factors.

modularity of the observer model further enabled us to study
the role of specific computational components, such as employ-
ing only subtrees of a motion structure, as well as the role of
specific perceptual components, such as noise at different stages
or exploiting the concept of inertia during tracking. We did not
consider further features underlying human performance, such
as attention effects (15, 29, 31), tracking of subsets of dots, or
not consistently employing all features of a motion structure, as
these are more challenging to operationalize within our frame-
work, and were not central to this study. A systematic deviation
between human MOT performance and model predictions in
the GLO condition finally points to additional temporal integra-
tion on intermediate time scales (∼ 1 s; SI Appendix, Fig. S4),
going beyond established explanations based on object distance
(20, 32).

Our aim to resolve the fine structure of human motion priors
has thus led us to the development of a probabilistic multi-
ple object prediction task that augments single-object predic-
tion (11) with velocity covariances within a tractable protocol.
Including posterior covariance matrices in the observer model
greatly enhanced the log-likelihood ratios in the prediction task
beyond the resolution achievable in single-object prediction
(SI Appendix, Fig. S11), an effect potentially related to self-
consistency biases (33). While we had originally developed our
modular matrix representation L of hierarchical structure as an
extension to the motion trees in ref. 10, the proposed decompo-
sition into graph connectivity and motion strengths bears some
resemblance to the semantic structure interpretation of singular
value decomposition applied in ref. 34 to categorical data and to
Pythagorean tree embeddings used in ref. 35 for describing lan-
guage structure. Flexible structure representations are expected
to foster cognitive science research on how humans infer the
motion structure of a visual scene—potentially recruiting from
a set of motion features—and how such motion features for
modular combination could be learned in the first place.

Biologically, the importance of motion for visual scene per-
ception is reflected in the tuning of cells in primate visual areas.
Neurons in the middle temporal (MT) area are frequently tuned
to the speed and direction of velocity within their receptive
field (36), while downstream areas, like the dorsal medial supe-
rior temporal (MSTd) area, encode progressively richer motion
primitives such as selective tuning to expansion, rotation, and
spiraling (37, 38). This points to a feature repertoire that is tai-
lored to behaviorally relevant stimuli such as radial expansion
(the visual pattern on the retina of a forward-moving observer) or

rotation (when tilting your head to the left/right). Little, however,
is known about how such motion primitives are further recruited
in neural circuits for high-level, hierarchical motion processing.
Our motion structure representation is compatible with existing
neural implementations of Bayesian sensory integration, such as
the neural Bayesian filtering model of Beck et al. (39). In combi-
nation with physiology-based models of motion integration (40,
41), this could bring forth normative neural models of structured
motion perception in higher visual areas, and guide experiments
on the neural code along the visual motion pathway.

Materials and Methods
Motion Structure Matrix Representation. We describe the motion of K visible
objects that are driven by M motion sources. Usually, M>K, since, besides
shared latent sources, each object can feature individual motion. We rep-
resent how motion source m affects object k via a composition matrix of
motion motifs C ∈RK×M. If m drives k, we set Ckm = 1; if m does not affect
k, we set Ckm = 0; for counterrotating motion, we set Ckm = +1 and −1 for
opposing directions. Thus, each column of C encodes a motion motif (e.g.,
all “1”s for global motion), which is tied to motion source m. Each motion
source has an associated real-valued motion strength λm≥ 0, and we define
the motion structure matrix L as the product of composition and strengths,
L = C Λ with Λ= diag(λ1, ..,λM), that is, strength λm scales the mth motion
motif.

Motion-Structured Stimuli. The stochastic dynamics for location zt ∈ [0, 2π)K

and velocity vt ∈RK are given by

dvt =−vt/τ dt + L dW t [1]

dzt = vt dt, [2]

with friction time constant τ ∈R+ and M independent Wiener processes in
vector W t . The values of τ and Λ used in each experiment are provided in
SI Appendix. For simulations, we employed Euler–Maruyama integration to
advance the dynamics, and we map zt 7→ (zt mod 2π) after each step to keep
locations on the circle. The stationary distributions under above dynamics
are (see ref. 14)

lim
t→∞

p(v) =N (v; 0, Σv), lim
t→∞

p(z) =
K∏

k=1

Uniform (zk; 0, 2π), [3]

where Σv = (τ/2)LLT, and the expression for p(z) assumes that each object
has a nonvanishing independent motion component. Knowing the station-
ary velocity covariance Σv in closed form gives convenient control over the
stimulus. For example, the marginal velocity distribution of the kth object is

N
(

vk; 0, σ2
vk

)
with σ2

vk
=
∑

m λ
2
m · C

2
km, which is simply the sum of all par-

ent motion sources’ squared strengths. In all experiments, we initialize the
stimuli from a sample of their stationary distribution. Then, velocities follow
a multivariate Gaussian at any time, and locations become asymptotically
independent.

Experiment Details: MOT Task. Twenty Harvard University undergraduates
(mean age = 20.6 y, SD = 2.01; 14 females) with normal or corrected-to-
normal vision participated in the experiment for course credit. All partici-
pants provided informed consent at the beginning of the experiment. The
experiment lasted approximately 2 h and comprised a thresholding phase
and a testing phase. Across both phases, participants performed an MOT
task, in which they were presented with a 2,000-ms static display wherein
seven colored dots encircled by white outlines appeared around a larger
black ring. All dots proceeded to move around the ring for 5,000 ms,
following predetermined trajectories. Stimulus motion trajectories were
precomputed using custom Python code, and initial values for v and z
were drawn from the stimulus motion structure’s stationary distributions
[3]. When precomputing the trials, we asserted that the final dot locations
were nonoverlapping, to prevent selection ambiguity (trials with overlap
were regenerated until they met this criterion). Red square outlines subse-
quently appeared for 3,000 ms around three of the moving dots, marking
them as to-be-tracked targets. The target cues and disc colors then faded
to black during the following 700 ms, after which the white outlines con-
tinued to move for 6,000 ms until coming to a stop. A random number
(1 to 7) was subsequently superimposed on each dot, prompting partic-
ipants to report the identities of the perceived targets by making the
appropriate keyboard presses. Feedback was provided after every trial. The
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MOT tasks implemented across both phases were nearly identical, with the
following exceptions. Whereas movement trajectories in the thresholding
phase followed IND motion, those implemented in the test phase varied
across blocks (Latin-square counterbalanced) based on each motion struc-
ture condition (IND, GLO, CNT, CDH1, and CDH2). The thresholding phase
was used to titrate motion speed by adjusting a per-participant speed fac-
tor fspeed (SI Appendix, Eq. S2), such that all participants would achieve a
common baseline on IND trials. To this end, participants performed 30 IND
trials at an initial speed of fspeed = 2.0. Whether performance at this ini-
tial speed fell above or below the targeted 2.15 performance threshold,
participants completed a subsequent 30 trials of the same task at a faster
or slower speed (speed factors varied by 0.25 increments). This staircase
thresholding procedure was repeated until each participant’s average tar-
get identification accuracy approximated 2.15 items per trial (mean number
of repetitions = 2.40, SD = 0.68). Once thresholding was complete, partic-
ipants performed 150 trials of the MOT task at their determined speed.
Prior to the onset of each motion structure block, participants were pre-
sented with three example trials inherent to the forthcoming block of
displays, and were provided with a motion graph that explicitly laid out the
motion structure based on the colors of the moving items. Example trials
and details of experiment conduction are provided in SI Appendix. No data
were excluded from the analysis. The study was approved by the Harvard
Institutional Review Board (IRB00000109). The data (42) are available for
download.

Bayesian Observer Model: Kalman Filtering (Both Experiments). We assume
independent Gaussian observation noise on the locations of each video

frame, p(xt,k | zt,k) =N
(

xt,k; zt,k, σ2
obs,k

)
, for all dots k = 1..7. Together

with the latent stochastic linear dynamics of [1] and [2], this defines a
generative model. Kalman filters calculate the joint posterior distribution
over locations and velocities by inverting the generative model. The cir-
cular support of z, however, renders the normal distribution underlying
Kalman filtering into an approximation. To maintain a close approximation
to the correct posterior, we ensured that variances of the location poste-
rior p(zt | x1:t) remained small at all time. For all observable dots, location
estimates are much smaller than π anyway; for the unobserved dots in the
prediction task, we designed the stimuli such that the correct posterior’s SD
never exceeded 40◦. Thus, most of the probability mass stayed within the
(unwrapped) circle at any time, and errors introduced by the Gaussianity
assumption are small. The corresponding matrices of the motion-structured
Kalman filter are provided in SI Appendix.

Bayesian Observer Models: MOT Task. The above Kalman filter was used
for tracking, assuming either the correct motion prior L? to underlie the
stimulus, or an alternative putative motion prior L with identical marginal

velocity distributions N
(

vk; 0, σ2
vk

)
. Following ref. 17, different possible

mental dot assignments γ are scored at each frame by comparing the like-
lihoods of the current observation xt under the possible assignments. As in
ref. 17, this poses a numerically intractable inference process (per frame,
there are K! possible assignments; the total number of assignments per
trial thus grows as K!#frames). We use discrete particle variational inference
(43) for approximate inference, with a single particle and the set of all
pairwise dot permutations as differential proposals per frame. For the com-
putational and momentum-free observers, after each frame (at time t),
the highest-scoring candidate assignment γ is maintained with the trajec-
tory likelihood p(x1:t | γ) as score function; for the Weber’s law observer,
the assignment is sampled from p(γ)∝ p(x1:t | γ)4. The assignment γ at the
end of the trial determined which three input dots were chosen as tar-
gets. Note that the observer models of the MOT task are not statistically
“ideal” observers, since they rely on approximate inference for dot assign-
ments and subsume the effect of noise at all computational stages within
a single fitted parameter σobs. In the numerical evaluation, the Kalman fil-

ter was provided with noisy observations, xt,k ∼N
(

zt,k, σ2
obs,k

)
mod 2π, for

the computational and Weber’s law observers; the momentum-free observer
received noise-free observations. The size of σobs,k was determined via com-
puter simulations to yield, on average, the target performance (2.15) in
the IND condition. Therefore the observer models are not expected to
perform generally better than human participants. For the computational
observer, σobs,k = 0.05 for all dots k = 1..7; for the Weber’s law observer,
σobs,k =σ0 (1 + 5 |vt,k|) and σ0 ∈ [0.008, 0.016], depending on the speed
level fspeed of the participant. Given the separate fitting of the noise param-
eters for both models, the Weber’s law observer is not expected to perform
generally better or worse than the computational observer in terms of cor-
rectly tracked dots. Each trial presented to a human participant was then

simulated 25 times (with changing noise instantiations), and simulated per-
formance was averaged over all repetitions to reduce the variance of the
observer model’s predictions (shrinking the error bars in Fig. 2 B, Center and
Right and in Fig. 3B). The generative model of the momentum-free observer
as well as details on the log-likelihood estimation for the additional analysis
in Fig. 3C, which is based on the simulated repetitions trials, are provided in
SI Appendix.

Experiment Details: Prediction Task. Twelve adult individuals (mean age =
31 y, SD = 9 y; 10 males) participated in exchange for financial compensa-
tion ($10 per hour plus a performance-dependent bonus). All participants
reported normal or corrected-to-normal vision, and provided informed con-
sent at the beginning of the study. On average, the experiment lasted
approximately 80 min. Each participant completed 100 trials per motion
structure (GLO, CLU, and CDH), presented in blocks (50 unique trials per
block, each presented twice in randomized order). Block orders were bal-
anced across participants. Participants were informed about the stimulus
condition and performed a variable number of training trials prior to each
block until they decided to start the experiment block. Dots were color
coded as shown in Fig. 4E. Trials were composed as follows. Initial values for
v and z were drawn from the stimulus motion structure’s stationary distribu-
tions [3]. After a 1,000 ms still period, all dots started moving stochastically
for 5,000 ms according to [1] and [2]. During the end of the 5,000-ms period,
the red and green target dots faded out, and only the remaining five dots
were visible for another 1,500-ms period, after which the scene froze. The
green and red dots’ locations had to be predicted by directing a green/red
mouse cursor to the predicted location on the circle. After each trial, the
true dot locations were revealed, and participants received points (0 to 20)
based on the accuracy of their prediction. The points only served as task
engagement and for payment, and played no role for the analysis. Example
trials and details of experiment conduction are provided in SI Appendix. No
data were excluded from the analysis. The experiment was approved by the
Harvard Institutional Review Board (IRB15-2048). The data (44) are available
for download.

Bayesian Observer Model: Prediction Task. Kalman filters with different can-
didate motion priors L were presented with the same trials that had been
shown to human participants. For the observer model, we assume correct
dot assignment (γ= I) and set σobs = 0 for observed dots, since dot confu-
sion and observation noise-induced errors are expected to play a negligible
role in the prediction task. While invisible, we set σobs→∞ for the green
and red dots. For candidate prior L, human responses ϕ(i) = (ϕ(i)

green, ϕ(i)
red) in

trial i = 1, .., 100 are then modeled as

p(ϕ(i) | L, θ) = (1−πs) · N
(
ϕ

(i); µ(i)
kal, a Σ

(i)
kal + b I

)
[4]

+πs · N
(

Sϕ(i); µ(i)
kal, a Σ

(i)
kal + b I

)
,

where µ(i)
kal and Σ(i)

kal are the (2D) mean and (2× 2) covariance matrix of
the Kalman filter with motion prior L for the green and red dots at the
end of the trial. The matrix S =

(
0 1
1 0

)
models dot swapping in the response

with probability πs, and a, b∈R+ scale structured inference noise and
unstructured motor noise, respectively. Eq. 4 describes a stochastic pos-
terior observer model (the winning model identified in the systematic
comparison of ref. 22) with lapses and motor noise. The three free param-
eters θ= (πs, a, b) were fitted via maximum likelihood for each candidate
prior L, stimulus condition L?, and participant. In Fig. 4 C and D, only the
nonswapped model component is illustrated. The log-likelihood ratios to
the model with correct motion prior,

LLRL? ,L =
∑

Trials i

log
p (ϕ(i) | L , θML

L )

p (ϕ(i) | L?, θML
L? )

, [5]

are plotted in Fig. 4E. One-tailed paired t tests identify whether the correct
prior L? explained human responses better than alternative priors L.

Distinguishing Systematic and Stochastic Errors in the Prediction Task. We
evaluated the noise factor fnoise separately for the green and red dots per
stimulus condition and participant; that is, each noise factor is based on the
repetitions r = 1, 2 of the unique trials j = 1, .., 50 in one stimulus block. We
define the average noise variance,

σ
2
noise =

〈
Var
[
d(ϕ(r)

j , ϕj)
]
r

〉
j
, [6]
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where 〈·〉j denotes the average over unique trials, Var [·]r is the unbi-
ased estimator of the variance over trial repetitions, d(·, ·)∈ (−π,π] is
the (signed) distance on the circle, and ϕj is the circular mean of the

two responses ϕ(1)
j and ϕ(2)

j . We further define the total prediction
variance

σ
2
tot =

〈
d2(ϕ(i), ϕ(i)

opt)
〉

i
[7]

as the mean-squared error made compared to the optimal prediction ϕ(i)
opt =

µ(i)
kal(L

?). The estimators σ2
noise and σ2

tot−σ
2
noise were verified to recover the

stochastic and systematic error components of synthetic data. The noise fac-
tor is defined as the ratio fnoise =σ2

noise/σ
2
tot. Based on synthetic data, the

SD of the noise factors in Fig. 5B is estimated to be 0.10.

Data and Code Availability. Computer simulations and data analysis were
performed with custom Python code which is available on https://github.
com/DrugowitschLab/motion-structure-used-in-perception. All human re-
sponse data have been deposited in Figshare (MOT experiment: 10.6084/m9.
figshare.9856271.v1; prediction experiment: 10.6084/m9.figshare.9856274.v1).
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