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Abstract

CCNLab is a benchmark for evaluating computational cognitive neuroscience mod-
els on empirical data. As a starting point, its focus is classical conditioning, which
studies how animals predict reward and punishment in the environment. CCNLab
includes a collection of simulations of seminal experiments expressed under a
common API, as wells as tools for visualizing and comparing simulated data with
empirical data. CCNLab is broad, incorporating representative experiments from
different categories of phenomena; flexible, allowing the straightforward addition
of new experiments; and easy-to-use, so researchers can focus on developing better
models. We envision CCNLab as a testbed for unifying computational theories
of learning in the brain. We also hope that it can broadly accelerate neuroscience
research and facilitate interaction between the fields of neuroscience, psychology,
and artificial intelligence.

1 Introduction

Brains are the de facto standard for general intelligence [Lake et al., 2017], and many researchers
believe that progress in artificial intelligence is intimately intertwined with understanding natural
intelligence [Hassabis et al., 2017]. Modern research in neuroscience and psychology increasingly
relies on computational models to express theories about how the brain works [Durstewitz et al.,
2016, Jonas and Kording, 2017, Linderman and Gershman, 2017, Kriegeskorte and Douglas, 2018,
Levenstein et al., 2020, Gershman, 2021]. This has brought the fields studying artificial and natural
intelligence even closer, with computational neuroscientists directly borrowing ideas from machine
learning [Montague et al., 1996, Yamins et al., 2014, Stachenfeld et al., 2017, Ma and Peters, 2020,
Saxe et al., 2020] and vice versa [LeCun et al., 1995, He et al., 2016, Sutton and Barto, 2018]. This
perpetuates a “virtuous cycle” in which the science and engineering of intelligence may progress
together [Hassabis et al., 2017].

Despite these promising developments, there is a significant rift between machine learning and
computational neuroscience in how research is evaluated and compared. Machine learning has
benefited from the widespread adoption of publicly available datasets and benchmarks, like ImageNet
[Deng et al., 2009] and OpenAI Gym [Brockman et al., 2016]. This has been instrumental for
algorithm design, as the strengths and weaknesses of different work can be directly compared, and
research is incentivized to perform beyond narrow, domain-specific tasks. In contrast, models in
computational neuroscience have often been confined to a small set of phenomena in a specific
domain, and due the lack of standards for evaluation, even those models can be difficult to compare.
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Figure 1: Overview of CCNLab architecture. Users can simulate their models on a wide variety
of classical conditioning experiments, and the simulated results are evaluated against empirical
results from published work. Each experiment is an environment that simulates a schedule of stimuli
mirroring a real-world study.

We present CCNLab (short for Cognitive Computational Neuroscience Lab), a benchmark for com-
putational models of classical conditioning. Using our Python framework inspired by OpenAI Gym
[Brockman et al., 2016], users can simulate their models on a wide variety of classical conditioning
experiments, and the simulated results are evaluated against empirical results from published work.
Currently, the CCNLab registry includes 30 experiments to simulate the most established classical
conditioning phenomena selected from the list provided in Alonso and Schmajuk [2012]. Our frame-
work is modular and extensible, allowing developers to easily extend the benchmark with additional
experiments from the literature or of their own design.

Classical conditioning has a rich history dating back to Pavlov [1927] and exhibits a diverse set
of phenomena that have been extensively studied [Alonso and Schmajuk, 2012]. It has attracted
much interest for computational modeling [Ertugrul and Tagluk, 2015, Gershman, 2015, Kutlu and
Schmajuk, 2012b], and is closely related to reinforcement learning and optimal sequential decision
making [Niv, 2009]. These factors make it an excellent starting point for introducing benchmarks into
computational neuroscience and encouraging reproducible, rigorous evaluation of models. To that
end, we also perform a series of baseline experiments to evaluate existing methods on this benchmark.
Our analysis reveals that, while our baselines are able to reproduce certain effects well, they lack the
ability to generalize to a wider range of phenomena. We conclude by suggesting future extensions
and research directions for computational modeling guided by publicly available benchmarks.

Our code for the benchmarks and baseline experiments has been open-sourced under the MIT License
and is available at: https://github.com/nikhilxb/ccnlab.

2 Background

2.1 Classical Conditioning

A critical feature of intelligence is the ability to adapt in response to positive and negative feedback.
The branch of machine learning that studies how agents can take actions that maximize reward
is known as reinforcement learning [Sutton and Barto, 2018]. In neuroscience and psychology,
learning based on rewards and punishments is studied through the paradigms of classical (Pavlovian)
conditioning and instrumental (operant) conditioning. Classical conditioning studies how animals
learn to predict outcomes in their environment, while instrumental conditioning studies how animals
learn to select actions that lead to better outcomes.
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Figure 2: Summary of simulated experiments. The registry currently includes 30 experiments to
simulate the most established classical conditioning phenomena selected from the list provided in
Alonso and Schmajuk [2012] (see Appendix A for details). In the plots, experimental groups are
separated by color, and stimuli are separated into individual bars/lines labeled with stimulus names.

In a typical classical conditioning experiment, the subject is presented with one or more conditioned
stimuli (CS, e.g., a tone) followed by an unconditioned stimulus (US, e.g., food), which elicits an
unconditioned response (UR, e.g., salivating) prior to training. After repeated pairing of the CS
and the US over the course of multiple trials, the subject may begin to respond to the CS with what
is known as the conditioned response (CR, e.g., salivating), as in the classic example of Pavlov’s
dog salivating in response to the sound of the bell [Pavlov, 1927]. The CR is a standard measure
in classical conditioning experiments, and different schedules of CS stimuli result in different CR
behavior, producing the wide range of classical conditioning phenomena that has been extensively
cataloged [Alonso and Schmajuk, 2012].

2.2 Computational Modeling of Classical Conditioning

Reinforcement learning is deeply rooted in the study of conditioned behavior [Niv, 2009], dating
back to Thorndike’s seminal law of effect [Thorndike, 1898] and Skinner’s principle of reinforcement
[Skinner, 1935] in the early 20th century. By midcentury, the first formal treatments of animal
learning were beginning to emerge in the field of mathematical psychology [Bush and Mosteller,
1951], paving the way for the famous Rescorla-Wagner model [Rescorla, 1972]. The Rescorla-
Wagner model provided a formal account of a wide number of puzzling phenomenon in classical
conditioning, such as blocking (the phenomenon where predictable rewards are poor reinforcers) and
overshadowing (the phenomenon where salient stimuli tend to form stronger associations). It was this
line of research that inspired the computer scientists Sutton and Barto to develop the foundational
concepts of modern reinforcement learning theory [Sutton and Barto, 2018]. In the following decades,
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a wealth of behavioral and neural evidence has further cemented the links between reinforcement
learning theory and animal learning [Niv, 2009], most notably the discovery that dopamine neurons
in the mammalian midbrain convey signals that closely correspond to the reward prediction errors
prescribed by reinforcement learning theory [Schultz et al., 1997]. These findings have in turn
spurred further research in reinforcement learning [Hassabis et al., 2017], leading to some remarkable
recent success of reinforcement learning algorithms across a wide number of domains, from board
games and video games [Mnih et al., 2015, Silver et al., 2017, Schrittwieser et al., 2020] to robotics
[Haarnoja et al., 2018, Akkaya et al., 2019] to self-driving cars [Toromanoff et al., 2020].

Following the Rescorla-Wagner model, many other computational models of classical conditioning
have emerged to explain a additional phenomena: the Pearce-Hall model posits that surprising
outcomes increase learning rates [Pearce and Hall, 1980]; Temporal Difference models account
for the temporal structure of neural learning signals [Schultz et al., 1997]; the Kalman Filter casts
learning as Bayesian inference and accounts for effects of outcome uncertainty [Kakade, 2001]. More
recently, Temporal Difference models operating on belief states have accounted for dopamine firing in
the face of partial observability [Starkweather et al., 2017], and distributional reinforcement learning
has accounted for the diversity of dopamine firing in the face of different reward distributions [Dabney
et al., 2020]. Notably, these models account for overlapping yet distinct sets of phenomena. Despite
promising recent work combining aspects of these models [Kutlu and Schmajuk, 2012b, Gershman,
2015], a unifying computational theory of animal learning is still lacking.

2.3 Benchmarks in Computational Neuroscience

In machine learning, it has long been recognized that standardized benchmarks and datasets are
essential to the development of algorithms [Deng et al., 2009, Brockman et al., 2016]. However,
in psychology and neuroscience, to the best of our knowledge there still do not exist standard
benchmarks for comparing theories of animal learning. Alonso and Schmajuk [2012] provides a list
of well-established classical conditioning phenomena. Subsequent work like Kutlu and Schmajuk
[2012b] has sought to evaluate models based on this list. However, a public benchmark encoding
these phenomena has not until now been created.

3 Technical Details

CCNLab provides a unified framework for specifying and simulating classical conditioning ex-
periments. An experiment in CCNLab is analogous to an RL-style environment, as it simulates
the interaction between the agent model and the world. Specifically, each experiment simulates
the schedule of stimuli presented in a real-world classical conditioning experiment drawn from
peer-reviewed academic research, and enables evaluation of the model’s simulated results with the
published empirical results.

Currently, the CCNLab registry includes 30 experiments (Figure 2) to simulate the most established
classical conditioning phenomena selected from the list in Alonso and Schmajuk [2012]. These
phenomena have been collected over a diverse range of conditioning preparations (e.g., visual/auditory
conditioning, taste aversion, eyeblink conditioning, fear conditioning). Across experiments, the CSs
were shapes, sounds, lights, flavors, and odors; the USs were food, shock, and mechanical stimulation;
and both CSs and USs covered a wide range of intensities and durations. The inter-stimulus intervals
(ISI) ranged from seconds to minutes; and the inter-trial intervals (ITI) ranged from seconds to days.

An overview of CCNLab architecture is provided in Figure 1. In the following sections, we describe
the technical details of CCNLab, separating information most relevant for users (who are primarily
concerned with evaluating the performance of their models in experiment simulations) and developers
(who are interested in extending the benchmark with additional experiments).

3.1 Simulation and Evaluation

Users may run their models on experiments using the provided Jupyter notebooks [Kluyver et al.,
2016] or custom Python scripts. Each experiment object encapsulates functionality for: (1) generating
the stimuli that serve as model inputs, (2) storing model outputs (i.e., conditioned responses), (3)
summarizing model outputs in a format that is directly comparable with empirical results gathered
from published work, and (4) plotting simulated and empirical results. Here is an example of the API:
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import ccnlab.benchmarks.classical as classical
import ccnlab.evaluation as evaluation

# Select experiments to run, filtering by name using glob syntax.
for exp in classical.registry('*'):

# Experiments often have multiple groups, each shown different stimuli.
for g, group in exp.stimuli.items():

# Users are free to decide how to initialize their models and how many
# instances to allocate per group.
for instance in range(N):

model = YourModelHere()

# Each group is shown a sequence of trials. At each timestep in a
# trial, the model input consists of the conditioned stimuli (cs),
# context (ctx), and unconditioned stimulus (us); the model output
# should be a response value.
for i, trial in enumerate(group):

for t, timestep in enumerate(trial):
cs, ctx, us = timestep
response = model.act(cs, ctx, us)
exp.data[g][i][t]['response'].append(response)

# Simulation results can be compared to empirical results from published
# work, via evaluation metrics (quantitative) and plots (qualitative).
empirical = exp.empirical_results
simulated = exp.simulated_results()
score = evaluation.correlation(empirical, simulated)
exp.plot()

Input Representation At each timestep in a trial, the environment provides:

1. cs: A list of active stimuli (string ids) and their magnitudes (positive real-valued). For most
experiments, the magnitudes are either 0 or 1.

2. ctx: The active context (string id). The context remains the same throughout a trial.

3. us: The unconditioned stimulus magnitude (positive real-valued). For most experiments,
the magnitude is either 0 or 1.

Alternatively, the cs and ctx are available as one-hot vectors with dimensions equal to the stimuli
and context space, respectively. The 3 components of the observation are provided separately as each
has unique semantic meaning. By definition, the US evokes a response in untrained subjects while the
CS do not [Pavlov, 1927]. Moreover, multiple studies have demonstrated the importance of context
for modulating conditioning effects to the CS [Alonso and Schmajuk, 2012, Gershman, 2017]. It is
therefore common for models of classical conditioning to treat these input signals differently.

Output Representation At each timestep in a trial, the model should provide a response value
(real-valued) indicating the strength of the conditioned response. Due to the diversity of conditioning
preparations used across experiments, a degree of standardization is needed to enable the same model
to perform across preparations. In particular, following Kutlu and Schmajuk [2012b], the response
value should represent the abstract CR itself, regardless of whether it is experimentally measured as
an increase or decrease of some behavior. For example, in an appetitive preparation like eyeblink
conditioning where the CR is measured as an increase in blinking activity, a lower response value
represents lower blinking activity and a higher response value represents higher in blinking activity,
as expected. Conversely, in an aversive preparation like bar pressing where the CR is measured as a
reduction in bar pressing activity, a lower response value of represents baseline/higher bar pressing
activity and a higher response value represents reduced/lower bar pressing activity.
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Experiment Parameters Each experiment simulates the schedule of stimuli presented in its real-
world counterpart. Due to the diversity of conditioning preparations used across experiments, the
number of conditioning trials vary significantly. By default, the experiments provide a number of
trials in each phase proportional to the original work or the simulations performed in Kutlu and
Schmajuk [2012b]. However, it is possible to change the number of trials per session, if desired.

Evaluation Metrics We follow the approach of evaluating models using scale-invariant, ordinal
measures of the quality of fit between empirical and simulated results. Following Kutlu and Schmajuk
[2012b], we use Pearson’s correlation coefficient r, which yields a value between -1 and 1 reflecting
a linear correlation between empirical and simulated results. A special case is when the empirical
results contain only 2 data points, in which case we use the ratio (smaller to larger) of ratios between
the data points, which yields a value between 0 and 1.

3.2 Specification

Developers may extend the benchmark with additional experiments from the literature or of their
own design. CCNLab provides a collection of data structures and functions to make it easy to
implement experiments, including: (1) an abstract syntax library for specifying experimental stimuli,
(2) processing functions for computing conditioned responses and suppression ratios from the raw
data, and (3) plotting functions to generate line or bar graphs.

Here is an example of the API, which has been simplified for clarify (for more details, refer to the
code repository):

import pandas as pd
import ccnlab.benchmarks.classical.core as cc

@cc.registry.register
class Acquisition_ContinuousVsPartial(cc.ClassicalConditioningExperiment):

def __init__(self, n=64, prob=0.5):
# Specify stimuli structure for each experimental group using the
# abstract syntax.
super().__init__({

'continuous': cc.seq(
cc.trial('A+'),
repeat=n, name='train'

),
'partial': cc.seq(

cc.sample({ cc.trial('A+'): prob, cc.trial('A-'): 1 - prob }),
repeat=n, name='train',

),
})

# Encode empirical results and configure how to plot.
self.empirical_results = pd.DataFrame(

columns=['group', 'session', 'A'],
data=[ ... ]

)
self.plots = [ lambda df, ax: cc.plot_lines(df, ax=ax, x='session') ]

# Transform from raw model responses to same format as empirical results.
def simulated_results(self):

df = self.dataframe(lambda x: {
'A': cc.conditioned_response(x['timesteps'], x['response'], ['A']),

})
return cc.trials_to_sessions(df, self.trials_per_session)

Abstract Syntax Library Each experiment presents a schedule of stimuli consisting of multiple
trials per group. To facilitate the specification of stimuli structure, we developed an abstract syntax
library that allows classical conditioning experiments to be expressed in a consistent way. By
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composing a sequence of nodes, developers may specify the structure using an abstract syntax tree,
which can then be compiled into the a sequence of trials, each consisting of multiple timesteps. The
syntax closely conforms to standard classical conditioning notation, using the following nodes:

• Stimulus: Leaf node specifying the presentation of a stimulus (string), its magnitude (float),
and its start and end timesteps in a trial (ints).

• Trial: Compound node specifying a trial consisting of the CS (list of Stimulus), CTX
(string), and US (Stimulus);

• Sample: Compound node specifying probabilities with which to choose each of its children.

• Sequence: Compound node specifing a sequence of nodes, how many times to repeat the
sequence, and a name (used for naming different phases of the schedule).

Empirical Results The published work that the experiments simulate present their results in the
form of summary statistics. Typically, the measure of interest is the conditioned response or a
suppression ratio, and this measure is plotted over trials/sessions (line plots) or over groups (bar plots).
For data collection, we relied on numerical tables in published work if they were available; otherwise,
we digitally enlarged the plots and used a grid overlay to more precisely estimate the measure values.

Simulated Results In order to compare simulated results to the empirical results, the raw model
responses must first be transformed into the same summary statistics as the empirical results. We
are given a set of active conditioned stimuli cst and model responses responset for each timestep
0 ≤ t < T in a single trial.

For appetitive preparations, the conditioned response to a stimulus x is the average response during
the presentation of x.

ConditionedResponse(x) =

∑
t:cst=x responset∑

t:cst=x 1

For aversive preparations, the suppression ratio to a stimulus x is the ratio of (reduced) responding
during the presentation of x compared to baseline responding. As described in Section 3.1, the
abstract response value must be inverted to correspond to aversive CR behavior. We use the maximum
response value for inversion as in Kutlu and Schmajuk [2012b].

SuppressionRatio(x) =

∑
t:cst=x(maxt responset)− responset∑

t(maxt responset)− responset

Finally, after computing the measure for each trial, the measures are aggregated across subjects
through averaging. If necessary, consecutive spans of trials are aggregated into sessions through
averaging.

4 Baselines and Experiments

To illustrate how the benchmark can be used in practice, we used it to compare 3 classical conditioning
baseline models from Gershman [2015]. For more details on the models and their parameters, see
Appendix A.

• Rescorla-Wagner [Rescorla, 1972]: The predicted reward (US) is a linear combination of
the input stimuli (CS), weighted by their associative weights. The weights are updated in
proportion to the reward prediction error – the difference between the predicted and actual
reward – and how active the stimuli are.

• Kalman Filter [Kakade, 2001]: A Bayesian extension of Rescorla-Wagner which learns
the covariance of the weights in addition to their mean. The learning rate is dependent on
the uncertainty encoded by the covariance.

• Temporal Difference Learning [Sutton, 1988]: A temporal extension of Rescorla-Wagner
which predicts cumulative future reward instead of immediate reward only.
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Figure 3: Plots for selected experiments. Models can be evaluated qualitatively by comparing plots
for empirical and simulated results. Column 1: Empirical results from published work. Columns 2-4:
Simulated results for each model. Plot coloring and notation are the same as Figure 2.

We evaluated the models based on how well they fit the empirical results for each experiment
according to the metrics in Section 3.1. Scores for all experiments are presented in Table 1, and scores
averaged across categories are presented in Table 2. We also plotted the empirical and simulated
results, for which a subset of experiments are shown in Figure 3.

Unsurprisingly, Rescorla-Wagner is able to account for phenomena it was designed to explain,
such as acquisition (Figure 3, Row 1), extinction (Row 2), external and conditioned inhibition
(Row 3), generalization with added and removed cues (Row 4), and overshadowing and forward
blocking (Row 5). Kalman Filter and Temporal Difference Learning are also able to account for these
phenomena well, since they are generalizations of Rescorla-Wagner. In addition, they each account
better for other phenomena, such as extinction of inhibition for Kalman Filter; and overexpectation,
superconditioning, and higher-order conditioning for Temporal Difference Learning, giving them
higher scores overall (Table 2). Notably, all models perform poorly on most experiments in the
benchmark, and even show negative correlations on a substantial number of experiments (Table 1).
This could be partially explained by the fact that model parameters were not tuned to each experiment,
although we found that performance did not change substantially with different parameter settings
(data not shown). We take this to highlight the limitations of these standard learning models which
are still widely used in neuroscience, suggesting a pressing need for the development and adoption of
more general theories of learning.
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Table 1: Scores for all experiments. Models can be evaluated quantitatively by computing measures
of fit between empirical and simulated summary statistics. These scores use the Pearson correlation,
except for experiments indicated by * which use ratio of ratios instead (see Section 3.1). Scores
greater than 0.8 are highlighted in bold.

Category Experiment Rescorla-
Wagner

Kalman
Filter

Temporal
Difference

Acquisition ContinuousVsPartial 0.80 0.83 0.85
Extinction ContinuousVsPartial 0.54 0.57 0.69
Generalization NovelVsInhibitor 1.00 0.99 1.00

AddVsRemove 0.60 0.75 0.60
Discrimination ReinforcedVsNonreinforced -0.88 -0.88 -0.89

PositivePatterning -0.82 0.88 0.89
NegativePatterning -0.64 -0.63 0.75
NegativePatterningCommonCue 0.15 0.02 0.74
NegativePatterningThreeCues -0.76 -0.70 0.46
Biconditional 0.23 0.33 0.68
FeaturePositive -0.30 -0.07 0.11
FeatureNegative 0.33 0.42 0.28

Inhibition InhibitorExtinction -0.36 0.99 0.48
Competition RelativeValidity* 0.00 0.00 0.00

OvershadowingAndForwardBlocking 0.99 1.00 0.99
Unblocking -0.65 -0.65 -0.17
BackwardBlocking* 0.17 0.12 0.77
Overexpectation -1.00 -0.99 0.87
Superconditioning -0.77 -0.65 0.88

PreExposure LatentInhibitionVsPerceptualLearning 0.00 0.00 0.00
USPreExposure* 0.81 0.62 0.96

Transfer Reacquisition 0.72 0.74 0.63
Recovery LatentInhibition 0.00 0.01 0.00

Overshadowing 0.83 0.78 0.62
ExternalDisinhibition 0.69 0.58 0.40
SpontaneousRecovery 0.97 0.93 0.56
Renewal* 0.00 0.00 0.00
Reinstatement -0.71 -0.70 -0.82

HigherOrder SensoryPreconditioning* 0.00 0.00 0.05
SecondOrderConditioning 0.01 0.17 0.49

Table 2: Scores for all categories. Averages across categories of the scores in Table 1. Scores greater
than 0.8 are highlighted in bold.

Category Rescorla-
Wagner

Kalman
Filter

Temporal
Difference

Acquisition 0.80 0.83 0.85
Extinction 0.54 0.57 0.69
Generalization 0.80 0.87 0.80
Discrimination -0.34 -0.08 0.38
Inhibition -0.36 0.99 0.48
Competition -0.21 -0.20 0.56
PreExposure 0.41 0.31 0.48
Transfer 0.72 0.74 0.63
Recovery 0.30 0.27 0.13
HigherOrder 0.01 0.09 0.27

Overall 0.27 0.44 0.53
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5 Conclusion and Future Work

We presented CCNLab, an open-source benchmark for computational modeling of classical con-
ditioning. To the best of our knowledge, this is the first benchmark of its kind for evaluating and
comparing computational models in neuroscience and psychology. We hope that it will encourage the
development of broader neuroscientific theories of learning, as well as the development of powerful
artificial intelligence algorithms inspired by the brain. In the following sections, we suggest future
directions for the benchmark and for research using the benchmark.

Benchmark Extensions While the presented benchmark is a step forward for the rigorous evalu-
ation of computational classical conditioning models, there are a number of extensions that would
improve it. (1) Currently, it contains a selection of experiments demonstrating the most well estab-
lished phenomena. We expect the registry of experiments to grow over time with contributions from
the authors and the community, adding experiments that capture a wider breadth of phenomena, espe-
cially regarding multi-modal combination and temporal effects that are presently missing. (2) There
is significant diversity in the types of conditioning preparations reflected by the experiments. For
more a standardized comparison, it would be useful to capture the phenomena in a single preparation,
or show the same phenomena across multiple preparations. (3) Currently, we only allow a single US
and UR, but the model should likely be extended handle multiple. (4) While current experiments test
the fit of simulated and empirical behavioral data, it is ultimately important for models of classical
conditioning to also capture neural data.

Research Directions (1) From our experiments it is evident that computational models of classical
conditioning still fail to explain a breadth of phenomena. We hope that the introduction of this
benchmark will encourage future research to consider a broader range of phenomena. (2) We hope
that CCNLab is only the first step towards widespread benchmarking in computational neuroscience.
In the future, we expect that benchmarks for different domains will be added, for instance to capture
the diverse phenomena of instrumental conditioning and short-term/working memory [Oberauer et al.,
2018]. (3) Finally, we believe that it will continue to be productive for the fields of artificial intelli-
gence and computational neuroscience to build on each other’s insights, simultaneously approaching
the project of intelligence from both a scientific and engineering standpoint.
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A Experiment Descriptions

Acquisition_ContinuousVsPartial [Wagner et al., 1967]: With repeated CS-US pairings, CS
elicits CR that increases in magnitude and frequency with further reinforcement. Partial reinforcement
leads to slower acquisition and a lower conditioning asymptote. Data: rat, fear conditioning, CS
visual + US shock → auditory startle.

Extinction_ContinuousVsPartial [Wagner et al., 1967]: When CS-US pairings are followed
by presentations of CS alone or unpaired CS and US, the CR decreases. Partial reinforcement leads
to slower extinction and a higher conditioning asymptote. Data: rat, fear conditioning, CS visual,
auditory + US shock → bar pressing.

Generalization_NovelVsInhibitor [Kutlu and Schmajuk, 2012a]: Adding a novel stimulus C
to a trained stimulus A results in a smaller decrease in CR than does adding a conditioned inhibitor X
to a trained stimulus A. Data: human, value prediction, CS visual + US value → value prediction.

Generalization_AddVsRemove [Brandon et al., 2000]: Adding a cue to a trained compound results
in a smaller decrease in CR than does removing a cue from a trained compound. Data: rabbit, eyeblink
conditioning, CS visual, auditory, tactile + US shock → eyeblink.

Discrimination_ReinforcedVsNonreinforced [Campolattaro et al., 2008]: A reinforced CS
elicits significantly greater CR than a non-reinforced CS. Data: rat, eyeblink conditioning, CS visual,
auditory + US shock → eyeblink.

Discrimination_PositivePatterning [Bellingham et al., 1985]: Reinforced AB+ intermixed
with non-reinforced A- and B- results in responding to AB that is stronger than the sum of the
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individual responses to A and B. Data: rat, appetitive conditioning, CS visual, auditory + US water
→ drinking.

Discrimination_NegativePatterning [Bellingham et al., 1985]: Non-reinforced AB- inter-
mixed with reinforced A+ and B+ results in responding to AB that is weaker than the sum of the
individual responses to A and B. Data: rat, appetitive conditioning, CS visual, auditory + US water
→ drinking.

Discrimination_NegativePatterningCommonCue [Redhead and Pearce, 1998]: Adding a com-
mon cue C to negative patterning decreases discrimination. Data: pigeon, appetitive conditioning, CS
visual + US food → feeding.

Discrimination_NegativePatterningThreeCues [Redhead and Pearce, 1995]: Non-reinforced
ABC- intermixed with reinforced A+ and BC+ results in responding to ABC that is weaker than the
sum of the individual responses to A and BC. Data: pigeon, appetitive conditioning, CS visual + US
food → feeding.

Discrimination_Biconditional [Saavedra, 1975]: Biconditional discrimination between com-
pounds (AC+/BD+ vs. AD-/BC-, where no single CS predicts reinforcement or non-reinforcement)
is possible but harder than component discrimination between compounds (AC+/AD+ vs. BC-/BD-,
where A and B predict reinforcement and non-reinforcement, respectively). Data: rabbit, eyeblink
conditioning, CS visual, auditory + US shock → eyeblink.

Discrimination_FeaturePositive [Ross and Holland, 1981]: Reinforced BA+, alternated with
non-reinforced A-, results in stronger responding to BA than A alone. In the simultaneous case
(BA+), B gains an excitatory association with the US; in the serial case (B→ A+), B does not gain
an excitatory association with the US. Data: rat, appetitive conditioning, CS visual, auditory + US
food → head jerk.

Discrimination_FeatureNegative [Holland, 1984]: Non-reinforced BA-, alternated with rein-
forced A+, results in weaker responding to BA than A alone. In the simultaneous case (BA-), B gains
an inhibitory association with the US; in the serial case (B→ A-), B does not gain an inhibitory
association with the US. Data: rat, fear conditioning, CS visual, auditory + US shock → bar pressing.

Inhibition_InhibitorExtinction [Zimmer-Hart and Rescorla, 1974]: Inhibitory conditioning
to X trained via A+→ AX- is extinguished by AX+ presentations. Data: rat, fear conditioning, CS
visual, auditory + US shock → bar pressing.

Competition_RelativeValidity [Wagner et al., 1968]: Conditioning to X is weaker when train-
ing consists of pairing X with stimuli A/B that are correlated with reinforcement, than when training
consists of pairing X with stimuli A/B that are not correlated. Data: rat, appetitive conditioning, CS
visual, auditory + US food → bar pressing.

Competition_OvershadowingAndForwardBlocking [Holland and Fox, 2003]: Training AB+
results in weaker conditioning to A than training A+ alone (overshadowing). Training B+→ AB+
results in even weaker conditioning to A (forward blocking). Data: rat, appetitive conditioning, CS
visual, auditory + US food → feeding.

Competition_Unblocking [Dickinson et al., 1976]: In forward blocking B→ AB+, increasing or
decreasing the US during AB presentation can increase responding to the blocked A. Data: rat, fear
conditioning, CS visual, auditory + US shock → bar pressing.

Competition_BackwardBlocking [Miller and Matute, 1996]: Training AB+ → B+ results in
weaker conditioning to A than training A+ alone (backward blocking). Data: rat, fear conditioning,
CS auditory + US shock → drinking.

Competition_Overexpectation [Rescorla, 1970]: Training A+→ B+→ AB+ results in lower
conditioning to A than without the AB+ compound. Data: rat, fear conditioning, CS visual, auditory
+ US shock → bar pressing.

Competition_Superconditioning [Rescorla, 1971]: Training B- → AB+ (superconditioning)
results in higher conditioning to A than training AB+ only (overshadowing) and yet higher than
training B+→ AB+ (forward blocking). Data: rat, fear conditioning, CS visual, auditory + US shock
→ bar pressing.
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PreExposure_LatentInhibitionVsPerceptualLearning [Lubow et al., 1976]: Pre-exposure
of CS A- before A+ pairings can result in reduced responding (latent inhibition) or increased
responding (perceptual learning) depending if the context is the same or different, respectively. Data:
rat, appetitive conditioning, CS olfactory + US food → feeding.

PreExposure_USPreExposure [Kamin, 1961]: Pre-exposure of US + before A+ pairings results in
decreased responding. Data: rat, fear conditioning, CS auditory + US shock → bar pressing.

Transfer_Reacquisition [Ricker and Bouton, 1996]: Following acquistion A+ and extinction A-,
A+ pairings can result in faster or slower reacquisition depending on the number of extinction trials.
Data: rat, appetitive conditioning, CS visual, auditory + US food → feeding.

Recovery_LatentInhibition [Grahame et al., 1994]: Extensive exposure to the context after
training results in reduction of latent inhibition. Data: rat, fear conditioning, CS auditory + US shock
→ drinking.

Recovery_Overshadowing [Matzel et al., 1985]: Extinction of B after overshadowing training AB+
results in increased responding to A. Data: rat, fear conditioning, CS visual, auditory + US shock →
drinking.

Recovery_ExternalDisinhibition [Bottjer, 1982]: Presenting a novel stimulus immediately
before a previously extinguished CS might produce renewed responding. Data: pigeon, appetitive
conditioning, CS visual + US food → feeding.

Recovery_SpontaneousRecovery [Rescorla, 2004]: Presenting the CS some time after the subject
has stopped responding might yield renewed responding. Data: rat, appetitive conditioning, CS
visual, auditory + US food → feeding.

Recovery_Renewal [Harris et al., 2000]: After extinction, presentation of the CS in a novel context
might yield renewed responding. Data: rat, fear conditioning, CS auditory + US shock → freezing.

Recovery_Reinstatement [Rescorla and Heth, 1975]: After extinction, presentation of the US in
the context might yield renewed responding. Data: rat, fear conditioning, CS auditory + US shock →
bar pressing.

HigherOrder_SensoryPreconditioning [Brogden, 1939]: When AB- pairings are followed by
A+ pairings, presentation of B may generate a response. Data: dog, reflex conditioning, CS visual,
auditory + US shock → flexion.

HigherOrder_SecondOrderConditioning [Yin et al., 1994]: When A+ pairings are followed by
AB- pairings, presentation of B may generate a response. The number of BA- pairings determines
whether second-order conditioning or conditioned inhibition is obtained. Data: rat, fear conditioning,
CS auditory + US shock → drinking.

B Baseline Model Details

We implemented three standard classical conditioning models as baselines following Gershman
[2015]. For all models, we used one-hot vector representations where the input is a conjunction of
the CS and the context [Gershman, 2017]. We use value vt as the response value, as conditioned
responding to a stimulus is assumed to be proportional to the value for that stimulus.

For each experiment, we simulated 20 subjects for each model. All experiments were performed on a
personal computer with 16 GB of RAM.

B.1 Rescorla-Wagner

The predicted reward (US) at time t, vt, is a linear combination of the input stimuli, xt, weighted by
their associative weights, wt:

vt = w>t xt (1)

Updating is governed by:
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wt+1 = wt + αxtδt (2)

where the prediction error, δt, is the difference between the predicted and the actual reward:

δt = rt − vt (3)

Following Gershman [2015], we set the learning rate to α = 0.3.

B.2 Kalman Filter

In a probabilistic interpretation of Rescorla-Wagner, the weights are assumed to be evolving according
to a linear Gaussian dynamical system (LDS) [Gershman, 2015]:

w0 ∼ N (0, σ2
wI) (4)

wn ∼ N (wn−1, τ
2
wI) (5)

rn ∼ N (vn, σ
2
r) (6)

This induces a posterior over the weights which can be inferred using Kalman filtering:

ŵn+1 = ŵn + knδn (7)

Σ̂n+1 = Σ̂n + τ2I− knx>n (Σ̂n + τ2I) (8)

where the learning rate corresponds the Kalman gain:

kn =
(Σ̂n + τ2I)xn

x>n (Σ̂n + τ2I)xn + σ2
r

(9)

and the initial mean and covariance are ŵ0 = 0, Σ̂0 = σ2
wI.

Following Gershman [2015], we set the diffusion variance to τ2 = 0.01, the noise variance to σ2
r = 1

and the prior variance to σ2
w = 1.

B.3 Temporal Difference Learning

Temporal difference learning models seek to learn the expected discounted sum of future rewards:

V (xt) = E

[ ∞∑
k=0

rt+k

]
(10)

Assuming the value is approximated as a linear combination of the stimuli, similarly to Rescorla-
Wagner, V (xt) = w>t xt, the associative weights are updated according to:

ŵt+1 = ŵt + αxtδt (11)

where the prediction error, δt, takes into account the future discounted rewards:

δt = rt + γŵ>t xt+1 − ŵ>t xt (12)

Following Gershman [2015], we set the discount factor to γ = 0.98 and the learning rate to α = 0.3.
In order to extend the stimulus representation across time, we used the complete serial compound
representation [Sutton and Barto, 1990].
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