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In many real-life decisions, options are distributed in space and
time, making it necessary to search sequentially through them,
often without a chance to return to a rejected option. The opti-
mal strategy in these tasks is to choose the first option that is
above a threshold that depends on the current position in the
sequence. The implicit decision-making strategies by humans vary
but largely diverge from this optimal strategy. The reasons for
this divergence remain unknown. We present a model of human
stopping decisions in sequential decision-making tasks based on
a linear threshold heuristic. The first two studies demonstrate
that the linear threshold model accounts better for sequen-
tial decision making than existing models. Moreover, we show
that the model accurately predicts participants’ search behav-
ior in different environments. In the third study, we confirm
that the model generalizes to a real-world problem, thus provid-
ing an important step toward understanding human sequential
decision making.

optimal stopping | cognitive modeling | adaptive behavior |
sequential decision making

Decisions that arise in everyday life often have to be made
when options are presented sequentially. For example,

searching for a parking spot, deciding when to take a vaca-
tion day, or finding a partner all require that the decision
maker accepts or rejects an option without knowing whether
future options will be more attractive. Decisions in such prob-
lems involve a trade-off between accepting a possibly suboptimal
option prematurely and rejecting the current offer out of false
hopes for better options in the future.

Despite the importance of such decisions, relatively little work
has been made toward characterizing the process by which
humans decide to stop searching in natural settings of this task.

Earlier research has focused on a simplified version of optimal
stopping problems, the so-called secretary problem, where only
the rank of the option relative to those already seen is shown
(1–3) and only the overall best alternative is rewarded. In the sec-
retary problem, the optimal strategy is to ascertain the maximum
of the first 37% options and choose the next option that exceeds
this threshold (4). Empirical studies suggest that in general peo-
ple follow a similar strategy but usually set the cutoff (i.e., from
which point on they will accept an option that exceeds the pre-
vious options) earlier than the 37% prescribed by the optimal
solution (1, 5).

Some studies have investigated tasks closer to real sequential
choice problems by presenting the actual value of the option to
the decision makers (6–10). In this version, the optimal is based
on calculating the probability of winning on the later positions.
From this probability, a threshold is calculated for each option
in the sequence as described by Gilbert and Mosteller (ref. 4,
section 3). Lee (6) estimated a family of threshold-based mod-
els and showed that most participants decreased their choice
thresholds as sequences progress. Although people are overall
quite heterogeneous in their search behavior, they tend to cluster
around the optimal solution (7, 8). Importantly, these studies still
kept the restriction that only the best alternative is rewarded—

a payoff function that does not correspond well with everyday
experiences. Humans do find a mate, an apartment to live in, or
a ticket to fly to their vacation destination and thus receive some
payoff, even if that may not be the highest possible payoff.

In the present research, we propose a model of human deci-
sion making in optimal stopping problems using payoffs that are
based on the actual values. In this variant of the search prob-
lem, the optimal decision thresholds are calculated based on
the expected reward of the remaining options (ref. 4, section 5b
and SI Appendix, text A). This leads to a decision threshold that
changes notably nonlinearly over the sequence.

In contrast, we propose that people rely on a mental shortcut
and adapt their thresholds linearly over the sequence. We show
that a model with this linearity assumption accurately captures
when people stop the search and accept an option, even in a real-
world setting. Furthermore, this model allows us to predict under
which conditions people search more or less than the optimal
model, making it a useful tool to understand human sequential
decision making.

We first sketch a family of cognitive models for describing
behavior in optimal stopping problems. We then present results
from three behavioral experiments that provide evidence for the
validity of the linear model in a laboratory setting as well as in a
real-world scenario.

Computational Models
We explain the computational models based on a typical optimal
stopping problem that we also used in our first two experiments.
The decision maker (here a customer) is planning a vacation
and decides to buy the plane ticket online. Ticket prices vary
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randomly from day to day and the customer wants to find the
cheapest ticket. The customer checks the ticket price every day
and decides whether to accept or reject the ticket, without hav-
ing the option to go back in time to a previously rejected offer.
Search time is limited by the customer’s vacation schedule (i.e.,
10 decisions per trial) and, once accepted, the search ends.

More formally, we consider a decision maker who encoun-
ters a sequence of tickets with values denoted by x1, . . . , x10
and the decision maker wants to find the minimum value in the
sequence. If the decision maker accepts ticket xi , the sequence
terminates and the decision maker has to pay xi ; otherwise, the
decision maker continues to the next ticket. When the last ticket
is reached, it must be accepted.

All models assume that the decision maker relies on a prob-
abilistic threshold to make the decision to accept or reject a
ticket—i.e., ticket xi on position i is compared to a position-
dependent threshold ti . This comparison yields an acceptance
probability θi based on a sigmoid choice function with sensitivity
parameter β and

θi =
1

1+exp{β(xi − ti)}
. [1]

Small values of β produce more stochasticity in decisions,
whereas the policy approaches determinism when β→∞.

We examine the setting of thresholds by comparing the
performance of four different models:

• The independent threshold model (ITM) serves as our base-
line. It assumes no dependency between the thresholds. It
entails N independent threshold parameters t1, . . . , tN , one
for each position in the sequence, where the decision maker
can decide to accept or reject an offer (at position N +1
the ticket must be accepted). The thresholds can take any
value across positions. The model maintains maximal flexibility
and provides an upper limit to how well any threshold model
can describe a person’s decision given the assumption of a
probabilistic threshold.

• The linear threshold model (LTM) postulates that the thresh-
olds are constrained by a linear relation to each other and
therefore are completely defined by the first threshold t0 and
the linear increase δ as the sequence progresses:

ti+1 = ti + δ · i . [2]

This model entails three free parameters, the first threshold t0,
the increase of the threshold δ, and the choice sensitivity β.

• The biased optimal model (BOM) is based on the bias-from-
optimal threshold model proposed by Guan et al. (8), assuming
that humans are using thresholds that deviate systematically
from the optimal thresholds. The optimal thresholds t∗i for
each position i are derived by determining the expected reward
of the remaining options (derivation in ref. 4, section 5b
and in SI Appendix, text A). The model entails a systematic
bias parameter γ that reflects the divergence of the human
threshold from the optimal one. Additionally, the thresholds
depend on a parameter α that determines how much their bias
increases or decreases as the sequence progresses:

ti = t∗i + γ+α · i . [3]

When γ and α are set to 0, the thresholds represent the opti-
mal thresholds that lead to best performance. This model is
therefore defined by three free parameters, γ, α, and the choice
sensitivity β.

• The cutoff model (CoM) is inspired by the optimal decision
rule for the rank information version of the secretary problem
where the distribution of the prices is unknown. It assumes that

the decision maker has a fixed cutoff value k that determines
how long the decision maker explores in the beginning of the
sequence. The highest value seen in that initial sample of k
tickets is then set as the decision maker’s threshold, and the
first value that exceeds this threshold in the remainder of the
sequence is chosen. This model has two free parameters, the
cutoff value k and the sensitivity parameter β.

Models were implemented in a hierarchical-Bayesian sta-
tistical framework using JAGS software (11) (SI Appendix,
text B).

Experiment 1
We asked 129 participants to solve a computer-based optimal
stopping problem following the ticket-shopping task described
above. Tickets were normally distributed with a mean value
of $180 and a SD of $20. In the first phase, subjects learned
the distribution using a graphical method proposed by ref. 12
(Materials and Methods). SI Appendix, Fig. S1A shows that this
procedure was successful in ensuring participants learned the
distribution.

In the second phase, participants performed 200 trials of the
ticket-shopping task. In each trial, participants searched through
a sequence of 10 ticket prices. For each ticket, they could decide
to accept or reject it at their own pace. Participants were aware
that they could see up to 10 tickets in each trial, and they were
always informed about the actual position and the number of
remaining tickets (see SI Appendix, Fig. S2E for a screenshot).
It was not possible to go back to an earlier option after it was ini-
tially declined. If they reached the last ticket (10th), they were
forced to choose this ticket. When participants accepted the
ticket, they received feedback about how much they could have
saved if they had chosen the best ticket in the sequence. Perfor-
mance was incentivized based on the value of the chosen ticket
(Materials and Methods).

Behavioral Results. Subjects earned on average 17.1 points (SD:
4.2) in each trial (maximum points = 20), which represents a 6%
loss on optimal earnings. Participants’ marginal accept probabil-
ities steadily increased as the sequence progressed (Fig. 1A, solid
black line), but differed systematically from the optimal agent’s
accept probability (Fig. 1A, dashed yellow line). On the second-
to-last (ninth) position, participants accepted the ticket only with
a 28%, 95% CI [26%, 29%], probability, whereas following the
optimal policy would result in a significantly higher acceptance
rate of 50%.

Overall, subjects stopped earlier than optimal. The average
position at which a ticket was accepted was 4.7 (SD: 2.9),
whereas an optimal agent would have stopped at an average
stopping position of 5.2 (SD: 2.8). However, a closer look at
Fig. 1A reveals that whether subjects accept too early or too late
depends on the position: On earlier positions they accept options
although they should continue to search, whereas, if they get to
position 7, they continue searching even for options that should
be accepted according to the optimal policy.

Fig. 1B shows the accept probabilities conditional on ticket
prices, split into the first 5 quantile ranges Q1 to Q5 (out
of a total of 10 quantile ranges). Qi is defined as the range
of ticket prices from the 0.ith to the (0.i-0.1)th quantile of
the ticket price distribution. In this experiment, the ticket dis-
tribution corresponds to a Gaussian distribution with mean
180 and SD of 20. Accept probabilities for Q4 and Q5 did
not reach 50% at position 9, in contrast to the optimal strat-
egy that predicts much higher acceptance probabilities at this
position.

Our models did not assume any learning over trials. This
assumption was supported by an analysis of performance across
trials. A linear mixed model on points per trial with trial number
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Fig. 1. (A) Probability to accept a ticket on each position across all prices. The solid black line represents the participant’s frequency to accept and the
dashed yellow line an optimal agent’s probability to accept. (B) Participants’ probability to accept. Each line represents ticket prices ranging from the first
quantile to the fifth quantile. Q1, tickets in first quantile; Q2, tickets ranging from the first to the second quantile, etc. The size of circles corresponds to the
number of data points on each position. (C) Estimated thresholds for the ITM with nine free threshold parameters (solid blue line), the LTM with two free
threshold parameters (dashed red line), and the BOM with two free threshold parameters (dashed-dotted yellow line). (D) Posterior predictive mean and
95% highest density interval of the LTM (dashed red line) and the BOM (dashed-dotted yellow line) for Q1 to Q5, as indicated in B. Data: solid black lines.

as fixed effect and by-participant random intercepts and random
slopes for trial number showed no significant effect of trial
number, F (1, 64.00)= 0.02, P =0.88.

Modeling Results and Discussion. First, we checked whether the
key assumptions of the modeling framework were supported.
We calculated, per participant and model, posterior predic-
tive P values (Ppp) that compared misfit (i.e., deviance) of
the observed data with misfit of synthetic generated data
from the model. For the baseline model, ITM, this analysis
indicated that the absolute fit was very good, and a proba-
bilistic threshold adequately describes participants’ responses;
Ppp < .05 for only 8% of participants (SI Appendix, Fig. S3A).
For the vast majority of participants the observed misfit was
consistent with the assumptions of the ITM plus sampling
variability.

The performance of the LTM was almost identical to that of
the ITM, suggesting that the considerably more parsimonious
LTM (3 free parameters for LTM compared to 10 for ITM)
adequately describes behavior in optimal stopping tasks. The
distribution of Ppp values of the LTM was almost identical to
that of the ITM (SI Appendix, Fig. S3 A and B). Fig. 1D pro-
vides qualitative evidence of the agreement between LTM and
data; the LTM adequately predicts accept probabilities for each
quantile at every position (see SI Appendix, Fig. S4 for agree-
ment between ITM and data). Fig. 1C compares the recovered
thresholds of ITM and LTM and shows that the ITM thresholds
essentially form a straight line lying exactly on top of the LTM
thresholds.

The absolute fit of the BOM is clearly worse than that for
ITM/LTM; Ppp < .05 for 35% of participants (SI Appendix,
Fig. S3C). The source of this increased misfit can be seen in

Fig. 1D. Only for Q1 and early positions of Q4 and Q5 did the
BOM provide an adequate account. Furthermore, the recovered
thresholds (Fig. 1C) of the BOM clearly differ from those of the
ITM in almost all positions. Results of the CoM are not shown
explicitly as its performance was extremely poor. All Ppp =0;
there was not a single posterior sample for which the observed
misfit of the CoM was smaller than for synthetic data generated
from the CoM. Furthermore, choices were essentially random
for CoM with βCoM =0.02 [0.01, 0.06] (for the other models,
β≈ 0.21).

Participants differed in their first threshold and slope param-
eters estimated by the LTM. However, all slope parameters
are larger than 0, indicating that all participants increased the
thresholds over the sequence (SI Appendix, text C).

These results suggest that humans use a linear threshold
when searching for the best option. In the present tests we
found that the human performance is only 6% off from the
performance of an optimal agent, indicating that the linear
strategy performs quite well. Therefore, using linear thresh-
olds could be an ecologically sensible adaptation to sequential
choice tasks. However, it could also mean that the LTM’s good
performance might not generalize to new task environments,
in which the linear model performs less well—an ability that
would be crucial for the LTM to be a useful model of human
behavior.

Search behavior in experiment 1 indicated that people devi-
ate from the optimal model depending on the price structure of
the sequence: In trials with good options in the beginning peo-
ple tended to accept them too early. However, in trials with few
or no good options they continued to search longer than the
optimal model prescribed (SI Appendix, Fig. S5). Accordingly, in
tasks with plenty of good options people might search less than
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Fig. 2. Results of experiment 2. Empirical data appear in black lines and the posterior predictive means of the LTM in red lines. Bars represent the 95%
highest density interval. The different lines represent the tickets ranging from Q1 to Q5. Q1, tickets in first quantile; Q2, tickets between the first and
the second quantile, etc. (A) Condition 1: Tickets are left-skewed distributed (PERT(40,195,200)) corresponding to a scare environment. (B) Condition 2:
Tickets are normally distributed (PERT(90,140,190)). (C) Condition 3: Tickets are right-skewed distributed (PERT(120,125,400)) corresponding to a plentiful
environment.

optimally. However, in tasks in which good options are rare they
might be tempted to search too long.

To find out and further predict how people will adapt to the
tasks, we conducted a simulation study comparing the optimal
solution with a best-performing linear model (using a grid search
to find the best-performing parameter values for the linear
model) and an empirical study manipulating the distributions of
ticket prices across three conditions: 1) a left-skewed distribution
simulating a scarce environment, 2) a normal distribution, and
3) a right-skewed distribution simulating an environment with
plentiful desirable alternatives. As illustrated in SI Appendix,
Fig. S6B, the simulation study showed that the optimal model
predicts more search in a plentiful environment, whereas a
linear model predicts more search in the scarce environment.
Furthermore, the linear model predicts a stronger decline in
performance in the scarce environment than the optimal model
(SI Appendix, Fig. S6A).

Experiment 2
To show that the LTM can capture people’s choice behavior
across different tasks and allows us to predict when people will
search too much or too little, we conducted a second exper-
iment changing the distribution of options. We manipulated
the different task environments by sampling tickets from 1) a
left-skewed distribution (PERT†(40,195,200)), 2) a normal dis-
tribution (PERT(90,140,190)), and 3) a right-skewed distribution
(PERT(120,125,400)), representing a scarce, a normal, and a
plentiful environment, respectively (SI Appendix, Fig. S1 B–D,
red lines). Each participant was assigned to only one condi-
tion. The final sample included 172 participants. The procedure
was identical to experiment 1, consisting of a learning phase,
where participants became acquainted with the distribution (SI
Appendix, Fig. S1 B–D, participant’s estimate in black lines), and
a testing phase. In the testing phase, participants had to choose
the lowest-priced ticket out of a sequence of 10 tickets with 200
trials (Materials and Methods).

Behavioral Results. Participants’ performance increased from the
left-skewed (scarce) environment to the right-skewed (plentiful)

†The PERT distribution (13) is a special case of the beta distribution defined by the min-
imum (a), most likely (b), and maximum (c) values that a variable can take and an
additional assumption that its expected value is µ= a+4b+c

6 .

environment (F (2, 268)= 114, P < .0001). As predicted by the
best-performing linear model, the loss compared to optimal per-
formance was largest in the left-skewed condition, where only
few good tickets occur (SI Appendix, Fig. S6A).

The average search length decreased from the left-skewed
scarce environment to the right-skewed plentiful environment,
F (2, 268)= 11.5,P < .0001. This pattern also follows the pre-
dictions of the best-performing linear model in the simula-
tion study but is in contrast to the optimal model’s predic-
tions (SI Appendix, Fig. S6B). Specifically, in the left-skewed
environment, where good tickets occur very rarely participants
searched too long compared to an optimal agent, whereas
in the environment where good tickets are abundant, partic-
ipants ended their search too early compared to the optimal
strategy.

Modeling Results and Discussion. Modeling results replicate the
results from experiment 1 and indicate that the LTM but not
the BOM performed extremely well (Ppp < .05 for 7 to 10% of
participants across the three conditions for LTM, but Ppp < .05
for 20 to 55% of participants for BOM; SI Appendix, Fig. S7).
The observed accept probabilities (Fig. 2 A–C, solid black lines,
where each line represents a ticket price within the specified
quantile range) are adequately described by LTM predictions
(dashed red lines) on almost all positions and in all three envi-
ronments. Moreover, the threshold parameters for the ITM
are again on top of the threshold parameters estimated by the
LTM in all of the three environmental conditions (SI Appendix,
Fig. S8 A–C).

These results indicate that humans use a linear threshold in
optimal stopping problems, independent of the distributional
characters of the task. However, this does not mean that peo-
ple do not adapt to the task at all. Participants are responsive to
task features and adapt their first threshold and the slope to the
distributional characteristics of the task within the constraints of
the linear model (SI Appendix, Fig. S8 A–C).

Experiments 1 and 2 show that the linear model reflects a
robust psychological process when deciding between sequen-
tially presented options. However, in both experiments deciders
were explicitly trained on the distribution of options, some-
thing not common in real-life decision making. The next
experiment tests whether the linear strategy can also explain
choices in a realistic optimal stopping task where initial learning
is omitted.
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Experiment 3
The decision maker’s goal is to buy online products at the
lowest rate where prices for this product are presented sequen-
tially. We selected commodity products from different categories
(e.g., food, leisure, kitchen tools) and collected for each prod-
uct a set of prices from Amazon.com. Only products with
approximately normal price distributions were selected for a
final set of 60 products (SI Appendix, Table S1). In the exper-
iment, prices were sampled from a normal distribution, with
a mean and SD estimated from the real prices. All partic-
ipants worked on 120 trials, divided into two blocks of 60
trials. In these two blocks, the 60 products were displayed in
a random order (each product was encountered twice). Par-
ticipants were aware that they could see up to 10 prices in
each trial, and we indicated the average price of each prod-
uct on the screen to reflect that people often have an idea of
familiar products’ prices and to minimize individual differences
in these.

Behavioral Results. Data from 95 participants were analyzed and
replicated the results from experiments 1 and 2 (normal dis-
tribution condition). Again, participants accepted too early, on
average at position 4.6 (SD: 2.9). Comparing the performance
in detail to the optimal strategy showed that (SI Appendix,
Fig. S9) participants accepted too frequently at the beginning
of the sequence (i.e., too low threshold) and searched too long
toward the end of the sequence (i.e., too high threshold). We
again found no evidence for learning across trials (linear mixed
model on points per trial with trial number as fixed effect and
by-participant random intercepts and random slopes for trial
number showed no significant effect of trial number F (1, 94)=
0.13,P =0.72).

Modeling Results. To deal with the prices’ variability we normal-
ized all values using mean and SD prior to fitting our models.
We could replicate the results from experiments 1 and 2, despite
the fact that participants did not explicitly learn the products’
prices beforehand: The LTM (10% of Ppp < .05; SI Appendix,
Fig. S10A), but not the BOM (31% of Ppp < .05; SI Appendix,
Fig. S10C), was able to capture the observed accept probabilities
accurately on each position and for each quantile (Fig. 3 B and
C). Furthermore, threshold parameters estimated by the LTM

were very similar to threshold parameters estimated by the ITM
(SI Appendix, Fig. S11).

Discussion
In this paper, we designed a variant of an optimal stopping task
that allowed us to quantitatively characterize the deviations of
human behavior from optimality. We found that humans apply
a simplifying strategy, where thresholds are linearly increased
over time. We implemented this assumption in a computational
framework and demonstrated that this model not only provided
an excellent fit to the data, but also outperformed other models
found in the optimal stopping literature. Furthermore, the linear
threshold assumption makes a nontrivial prediction about search
length, which we confirmed experimentally: Humans stop earlier
in environments with many desirable alternatives compared to
scarce environments. These results contrast with the prediction
from the optimal model. Finally, in an online product purchase
paradigm we could show that our model generalizes to real-
world sequential choice problems. Understanding how humans
make sequential decisions will help quantify the conditions under
which people may succeed or fail in such tasks.

But why are humans relying on a linear strategy in adapting
their thresholds when an optimal policy is nonlinear? For one,
our findings correspond to recent studies demonstrating that
human choice behavior in related explore–exploit paradigms is
well described by a linear threshold rule (14, 15). But a human
linearity bias seems to be more general. Indeed, a tendency
to assume linear relationships has been reported in a range of
domains such as function learning (16, 17) and reasoning (18–
20). Crucially, simple strategies do not necessarily perform badly.
In particular, in uncertain and complex environments, simple
heuristics can be efficient and powerful tools if they are adapted
to the structure of the environment (21, 22). In this context, lin-
earity could be considered as an adaptation of the human mind
to its environment.

Materials and Methods
Participants. We recruited 438 participants (272 females; age range, 18 to
62 y; N1 = 144, N2left = 92, N2normal = 110, N2right = 92, N3 = 100 in experi-
ments 1, 2, and 3, respectively) on Amazon Mechanical Turk to participate
in the experiments. Participants gave informed consent, and the Harvard
Committee on the Use of Human Subjects approved the experiments. Partic-
ipants were excluded from analysis if they accepted the first option in a trial
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Fig. 3. (A) Screenshot of the product-purchasing task. (B and C) Results of experiment 3. (B) Empirical data appear in solid black lines and the posterior
predictive means of the LTM in dashed red lines. (C) Empirical data appear in solid black lines and the posterior predictive means of the BOM in dashed
yellow lines. Bars represent the 95% highest density interval. The different lines represent the product prices ranging from the first quantile to the fifth
quantile. Q1, product prices in first quantile; Q2, product prices between the first and the second quantile; Q3, product prices ranging from second to third
quantile, etc.
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in more than 95% of the trials. After applying these criteria, we included
data from 499 participants in the subsequent analysis (N1 = 129, N2left =

86, N2normal = 102, N2right = 84, N3 = 95).
Task. In experiments (Exps.) 1 and 2, participants performed the same
online ticket-shopping task that consisted of a learning and a testing
phase. In the learning phase, participants experienced the distribution
from which the ticket prices were drawn. In Exp. 1, the distribution from
which the values were sampled was normal with N (µ= 180, σ= 20). The
procedure was as follows (SI Appendix, Fig. S2 A–D): Participants encoun-
tered sequentially 50 ticket prices drawn from the predefined distribution.
After every 10 tickets, participants had to guess the average value of the
tickets seen so far. After each guess, participants were told the correct
response. At the end of the learning phase participants were asked to com-
plete a histogram (by dragging the bars) for an additional 100 tickets that
were drawn from the same predefined distribution. Participants received
feedback by observing the correct distribution superimposed over their
estimate (12).

In Exp. 2, we used three conditions to realize three different dis-
tributional environments, a left-skewed distribution, PERT(40,195,200); a
normal distribution, PERT(90,140,190); and a right-skewed distribution,
PERT(120,125,400). The procedure of the learning phase was identical to
Exp. 1, except that we removed the section about reporting the mean for
the skewed distributions (SI Appendix, Fig. S2B). Visual inspection of the
performance in the histogram task suggested that participants learned the
target distributions well (SI Appendix, Fig. S1).

In the second phase of Exps. 1 and 2, participants performed the ticket-
shopping task. It started with a practice trial followed by 200 test trials. In
each trial participants searched through a sequence of 10 ticket prices ran-
domly drawn from the predefined distribution. For each ticket, they could
decide to accept or reject it at their own speed. People were aware that
they could see up to 10 tickets in each trial and they were always informed
about the actual position and the number of remaining tickets (SI Appendix,
Fig. S2E). It was not possible to go back to an earlier option after it was
initially declined. If they reached the last (10th) ticket, they were forced

to accept this ticket. When participants accepted the ticket, they received
explicit feedback about how much they could have saved by choosing the
lowest-priced ticket in the sequence (SI Appendix, Fig. S2F).

Participants were paid according to their performance. In each of the 200
trials there was a maximum of 20 points to earn. The participants received
the maximum number of 20 points if they chose the lowest-priced ticket
and 0 points for the worst ticket in the sequence. The payoff for a ticket
that lay between the lowest priced and the highest priced was calculated
proportional to the distance to the lowest-priced ticket in the sequence.
The exact calculation for the points in each trial i was

pointsi =
20 · (ticketmax − ticketchosen)

ticketmax − ticketmin
, [4]

where ticketmax represents the most expensive ticket in the sequence and
ticketmin the cheapest ticket in the sequence. Participants received a base
payment of $4 and earned between $0 and $4 additionally, depending on
their performance.

In Exp. 3, participants performed an online product shopping task that
started with a practice trial followed by 120 test trials divided into two
blocks containing the same 60 products. In each trial, they encountered a
product and searched through a sequence of 10 prices. Prices were randomly
drawn from a normal distribution with a mean and SD estimated from realis-
tic prices collected from Amazon.com. Participants received a base payment
of $2 and a performance-contingent bonus between $0 and $4.

Data Availability. Data and modeling scripts are available on the Open
Science Framework (23).
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