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Scaling models of visual working memory to
natural images
Christopher J. Bates 1✉, George A. Alvarez1 & Samuel J. Gershman 1

Over the last few decades, psychologists have developed precise quantitative models of

human recall performance in visual working memory (VWM) tasks. However, these models

are tailored to a particular class of artificial stimulus displays and simple feature reports from

participants (e.g., the color or orientation of a simple object). Our work has two aims. The

first is to build models that explain people’s memory errors in continuous report tasks with

natural images. Here, we use image generation algorithms to generate continuously varying

response alternatives that differ from the stimulus image in natural and complex ways, in

order to capture the richness of people’s stored representations. The second aim is to

determine whether models that do a good job of explaining memory errors with natural

images also explain errors in the more heavily studied domain of artificial displays with simple

items. We find that: (i) features taken from state-of-the-art deep encoders predict trial-level

difficulty in natural images better than several reasonable baselines; and (ii) the same visual

encoders can reproduce set-size effects and response bias curves in the artificial stimulus

domains of orientation and color. Moving forward, our approach offers a scalable way to build

a more generalized understanding of VWM representations by combining recent advances in

both AI and cognitive modeling.
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When viewing an image, what details do we store in
memory over the short term? What is the nature of the
cognitive bottleneck that restricts how much infor-

mation we can retain and recall? These and related questions have
been pursued for the last several decades, leading to the discovery
of several striking behavioral phenomena, including set-size,
attraction, repulsion, and inter-item interaction effects1,2. Math-
ematical models offer compelling and principled explanations for
many of these phenomena3–8. However, while these models can
test competing theories about the nature of people’s memory
representations and capacity limits, they lack generality. Criti-
cally, they cannot predict what people will recall about natural
images. While challenging, it is crucial to study memory for more
ecological stimuli, since findings are likely to reveal important
cognitive design principles that cannot be discovered by studying
more simplified and artificial settings alone9. Moreover, given
that our visual systems are optimized primarily to operate on
natural images, it is reasonable to ask whether many of the
phenomena we have identified in artificial domains are related to
this adaptation.

The effort to study visual memory in more ecological settings is
hindered in part by the same kinds of technological challenges
facing much of vision science. Due to the visual system’s com-
plexity, we have long lacked precise models of the computations
carried out in the visual stream. A simultaneous challenge lies in
stimulus design. To probe the richness of our representations in
the domain of natural images, we need methods to continuously
vary stimuli in ways that appear natural to participants. Deep
learning is beginning to offer effective tools to solve both of these
problems.

To build a general computational account of VWM for natural
images, we need a theory of where visual features come from. We
argue that the most parsimonious hypothesis is that VWM is
primarily built on top of feature detectors residing in the visual
stream and that our memory systems efficiently reuse these
computations by selecting subsets of the features and storing
noisy or compressed versions of them. Arguably, the most precise
models to-date for computations carried out along our visual
streams come from certain classes of deep neural networks
(DNNs)10,11. Thus, a reasonable starting place would be to select
features from these networks as candidates for the features that
feed into VWM.

In order to predict behavior, we next need to combine the
selected deep neural network features with a noise model. Here,
we adopt the target confusability competition (TCC) model7. This
model is a generalization of a standard signal detection model,
which assumes two response options, to tasks with arbitrary
numbers of choices. Critical to our purposes, it can generate
predictions for any feature space, including the kinds of complex,
high-dimensional feature vectors that are likely needed to capture
human visual representations, such as those derived from DNNs.
The TCC model is flexible in this way because it relies only on
pairwise similarity scores between the target stimulus and each
response alternative. Thus, the stimuli can be represented in any
hypothesized feature space, as long as a valid similarity metric can
be applied. Incorrect responses are assumed to result from a noise
process that corrupts the similarity scores (specifically, additive
Gaussian noise).

We note that an alternative to TCC would be to add noise
directly to the DNN representations, rather than to pairwise
similarity scores. For instance, one could add Gaussian noise to
each dimension of each DNN representation, then compute
similarity scores using the noise-corrupted vectors, and finally
take the maximum score as the response. This would lead to a
model that is mathematically similar, but raises the complication
that the model’s behavior then depends on nuisance factors,

such as the dimensionality of the visual representations and sta-
tistical moments of the activation values. Here, we are most
interested in whether the representational geometry of people’s
VWM representations is similar to that of a candidate DNN
layer12. That is, does higher pairwise similarity in the DNN layer’s
representational space predict higher confusability in people’s
memories?

Our TCC-based models build on the original work in impor-
tant ways. First, while Schurgin et al.7 refit the model’s single
noise parameter (d0) for each set-size, here we show that feature
spaces from select DNN layers can reproduce set-size effects
without fitting separate noise parameters. Second, Schurgin et al.
derived a psychological similarity function from perceptual
similarity judgments, without identifying the origin of this simi-
larity function. We show how DNNs can be used to derive
similarity functions that are predictive of VWM for natural
images. This also yields a practical benefit by obviating the need
to collect pairwise similarity judgments, which is impractical for
very large stimulus spaces.

We apply our modeling framework to VWM for both natural
images and artificial stimuli (color and orientation), comparing
several different DNN-based feature representations. To evaluate
the models, we used a combination of quantitative metrics (cor-
relation, likelihood) and qualitative checks (summary statistics
derived from the models and data). We show that our framework
can capture important aspects of both natural and artificial sti-
muli. However, the match between our models and human data
does not yet approach the noise ceiling, suggesting room for
improvement in future work.

Methods
DNN layers. For ResNet-based models, we selected all layers
from the pre-residual-block portion of the network, the last
convolutional layer within each bottleneck sub-module in each
residual block and the pooling layer just before the final output.
For VGG-19, we selected the last 32 layers within the sub-module
labeled “features” in the Torchvision implementation. This
excluded the last two fully connected layers before the soft-max
output. For the ConvNext models, we took the output of each
ConvNextLayer within each ConvNextStage, as defined by
the PyTorch model. For Vision Transformer-based models, we
took the attn and ln_2 sub-layers from each attention layer.

We downloaded pre-trained CLIP models from https://github.
com/openai/CLIP, PyTorch ImageNet classifiers from https://
pytorch.org/vision/stable/models.html and ConvNext models
from https://huggingface.co/models?sort=downloads&search=
facebook%2Fconvnext.

We trained the β-VAE model from scratch on the Places-365
dataset (https://pytorch.org/vision/main/generated/torchvision.
datasets.Places365.html) with β= 0.01, Adam optimizer with
default parameters, and a learning rate of 0.0001, for 13 epochs at
a batch size of 64. The encoder consisted of five standard
convolutional layers (with filter counts of 64, 265, 512, 512, and
512, respectively). The latent layer had a dimension of 2048. The
decoder consisted of five standard de-convolutional layers (with
filter counts of 512, 256, 256, 256, and 3, respectively). The kernel
size for all layers was 5.

For further details, please see our code repository at https://
github.com/c-j-bates/scaling-models-of-vwm-to-natural-images/
tree/main. Our experiments were not preregistered.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.
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Results
Continuous report with natural images. To study VWM for
natural images, we analyzed data collected by Son et al.13. Stimuli
were generated using StyleGAN14 (a generative adversarial net-
work) trained to produce novel, naturalistic indoor scenes
(Fig. 1). We will refer to this as the “Scene Wheels dataset”. On
each trial, participants performed a continuous report task.
Visually, participants first saw a GAN-generated indoor scene,
which subsequently disappeared for a short delay. On the
response screen, they initially saw a wheel with an image in the
center. As they moved the mouse around the wheel, the image
gradually morphed, and their task was to locate the original image
on the wheel. The image morphs corresponded to evenly spaced
samples along the circumference of a circle drawn in the GAN’s
high-dimensional latent space. Specifically, each circle was drawn
around a center-point in a randomly sampled 2D plane in the
latent space. Trial difficulty was controlled at a coarse level by
changing the radius of the circle. Larger radii resulted in more
distinct response alternatives since they were further away from
each other in code-space. The dataset includes 25 total “wheels”
(circles in latent space), with five unique center points (each
center belonging to a different random 2D plane) and five dif-
ferent radii around each center point.

Model zoo. We compare TCC models constructed based on a
wide range of feature spaces, including layers from deep vision
models and simpler baseline models. Our two simplest baselines
are the raw pixel vectors (length 3 × 256 × 256) and the RGB
channel averages (length 3). We also include the latent repre-
sentation from a β-Variational Autoencoder (β-VAE)15 as a more
sophisticated baseline. Deep autoencoder models have been
explored as tools to learn better image and video compression
algorithms for technological applications16,17, as well as to model
human visual memory18–20. Here, we consider it a baseline model
because it is a much smaller network than our non-baselines. In
addition to baseline models, we consider networks trained on the
ILSVRC ImageNet classification challenge (both the 1000-way
and 22,000-way versions) and networks trained on the contrastive
language-image pre-training (CLIP) objective21. The CLIP
objective is conceptually related to classification, but it encourages
networks to learn semantically richer outputs that capture all the
information contained in a typical image caption rather than a
single class label. We selected a subset of pre-trained models
provided by OpenAI, including models based on the ResNet-50
backbone (and larger variants of the same architecture), which is
a convolutional network, and Vision Transformer, which is non-
convolutional but also shown to be human-like22. For the Ima-
geNet classifiers, we took several classic, pre-trained networks

from the Torchvision repository. We also took pre-trained
ConvNext models23 (a recent convolutional competitor to
Vision Transformers) from Facebook’s Huggingface repository.
Finally, we took a “harmonized” version of ResNet-50 from the
repository provided by Fel et al.24, which is optimized to
encourage classification decisions to depend on the same areas in
the image that humans rely on when making the same decisions.

TCC model. We construct a separate TCC model for each layer in
each architecture, as well as each baseline (see Fig. 2 for a sche-
matic). For each trial, we compute all pairwise similarities
between the target stimulus and each of the 360 options along the
response wheel. We then multiply these 360 similarity scores by a
scaler, d0, which corresponds to the memory strength for an exact
match (similarity= 1), and therefore controls response accuracy.
Finally, we add independent Gaussian noise with unit variance to
each of the scores and take the option with the max score as the
model’s response on that simulated trial. (Note that it would be
mathematically equivalent to scale the variance of the noise,
rather than the similarity scores.) We simulated 8000 model
responses for each trial in the dataset.

Fig. 1 Evenly-spaced samples from one wheel in the Scene Wheels experiment (radius= 8). A participant in a trial moved the mouse around a response
wheel in order to recover the image that best matched their memory for the stimulus. The image displayed inside the response wheel smoothly morphed
with an angular position along the wheel. Scanning from left to right (starting on the top row and continuing to the bottom row), one can observe how the
image changes when moving along one such wheel.

Fig. 2 Schematic overview of our modeling pipeline using DNN features
and the TCC model. For a given DNN model and layer within that model,
we take the (flattened) activations from that layer after feeding in a
stimulus image and each response alternative from the scene wheel, in
turn. There were always 360 evenly-spaced response options. For each
option j, we computed the cosine similarity between that option’s activation
vector (yj) and the stimulus’s (yi). After scaling by a constant factor d0, we
added independent Gaussian noise with unit variance to each of the
360 similarity scores to produce corrupted similarity scores. Finally, we
assumed responses were the argmax of these noisy scores.
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Trial difficulty rank-order analysis. For each architecture con-
sidered, we searched for the layer that best matched human data.
For each layer, we fit our only model parameter, d0, according to
model likelihood. We conducted a grid search over d0 values and
used a histogram approximation to the model likelihoods. We
then estimated the Spearman correlation coefficient between the
human and model mean absolute error per trial. Because there
was a large number of unique stimuli compared to the number of
responses collected, it was necessary to bin trials. (Note that
nearby stimuli on a given response wheel tended to be highly
similar.) We divided each scene wheel into 12 evenly sized bins,
and for each bin, we averaged errors across all trials for which the
target stimulus fell within that bin.

Results of the Spearman analysis are presented in Fig. 3a.
When trials from all radii are aggregated, features taken from our
selected CLIP and ImageNet classifier models capture trial-by-
trial difficulty better than baselines. However, given the stimulus
design for this experiment, the crucial test lies in how much
variance can be explained within each radius. Because wheel
radius modulates trial difficulty at a coarse level, even a relatively
poor model can explain a fair amount of variance when
aggregating trials across radii. When restricting our analysis to
particular radii, our best models still beat out the baseline models,
explaining some fine-grained variance in the rank-order of
difficulty. As expected, baselines also had lower likelihoods
(Table 1). As another way to compare models, we also plotted
mean error per radius for humans and models (Fig. 3b).
Consistent with the correlation results, both our VAE model
and raw pixels capture the relationship between error and radius
as well as our best models. The best-fitting (zero-indexed) layers
tended to be past the midpoint of the architectures, specifically,

30 (of 36) for VGG-19, 24 (of 26) for CLIP ResNet-50, and 12 (of
23) for CLIP ViT-B16. Finally, see Supplementary for error
density (Fig. S1) and scatter plots (Fig. S2), as well as Spearman
results for all layers (Fig. S3).

We also conducted a comparison across DNN architectures to
examine what factors might lead an architecture to explain more
variance in this experiment (Fig. 4). We considered several
dimensions, including number of images seen during training,
type of architecture, and number of trainable parameters. Since
we are unable to do an exhaustive search over these factors (and
various confounds may exist), we present qualitative results,
which may be suggestive for future work.

Overall, we find that architecture, number of trainable
parameters, and number of training images may all be important
factors. For each architecture, we selected the best layer according
to its model likelihood. We find that the highest correlation is
achieved by a CLIP pre-trained network, which also saw the most
images during training, although some networks trained on the
original ImageNet 1000-way classification dataset are competitive

Fig. 3 Rank-order difficulty results for Scene Wheels dataset (N= 20 participants). a Spearman ranks correlations for trial difficulty between the best
layer in selected DNN architectures, baselines, and humans. Blue bars indicate p < 0.05. Dotted lines are an indication of the noise ceiling. Specifically, we
took bootstrap resamples of human responses within each radius, and for each resample we computed the Spearman correlation coefficient between it and
the original data. The lines are the fifth and 95th percentile. b Comparison of human and model mean errors within each wheel radius. Error bars are
bootstrapped with 90% confidence intervals.

Table 1 Comparison of models and baselines on Scene
Wheels dataset.

Model Log-likelihood Spearman

RGB channel means −25,722 0.24 (p < 0.001)
Pixels −23,077 0.70 (p < 0.001)
VAE −22,935 0.77 (p < 0.001)
CLIP RN50 −22,628 0.85 (p < 0.001)
CLIP ViT-B16 −22,647 0.84 (p < 0.001)
VGG-19 −22,606 0.83 (p < 0.001)
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with it. At the same time, we see that within the class of
ConvNext models, increasing the number of training images
increases correlation. However, the number of training images
may be confounded with the objective since the better-
performing ConvNext models were trained on the 22,000-way
classification task as opposed to the 1000-way. (Another
possibility is that training objectives that encourage richer
semantic information at the output layer lead to higher
correlations.) Keeping objective and training set fixed, we also
see that some architectures outperform others. Within CLIP-
trained models, the Vision Transformer does worse than several
convolutional architectures. Within models trained on ImageNet
1000-way classification, VGG-19 and ResNet50 outperform
ConvNext.

Continuous report with color and orientation. In our experi-
ments with artificial images, we analyzed previously collected data
from experiments studying color25 and orientation6 working
memory. Both experiments we analyzed used continuous report
tasks. In the color memory experiment, every item in each display
was probed, in turn. In the orientation experiment, one item was
probed at random. In both experiments, on each trial, partici-
pants first briefly viewed a display with a collection of items,
followed by a retention period, and finally a response screen.
Similar to the Scene Wheels experiment, participants moved the
mouse to select a point on the response wheel that best matched
their memory of the target item. The color dataset only includes
trials with set-size of three, and the stimuli were colored circles.
The orientation dataset includes set-sizes 1, 2, 4, and 8, and items
were oriented with colored lines.

In addition to examining rank-order of trial difficulty as above,
we aimed to explain set-size effects, as well as a subset of well-
known response biases and inter-item effects. We restricted our
evaluation to the same subset of well-performing models
presented in the Scene Wheels experiment. In each experiment,
we showed the same stimuli to our models as were shown to the
participants. For the response options, the unprobed items were
left intact, and the target item was varied.

Figure 5 shows the results of the rank-order difficulty analysis,
after refitting our selected DNN architectures to the color and
orientation datasets, separately. (Figs. S4 and S5 show the
unabridged results for all layers.) Based on these correlations

alone, it is unclear which model provides the strongest account
of orientation and color memory. Crucially, note that here
we have used absolute error rather than signed error in order to
be consistent with the previous analyses. As a consequence, these
results provide incomplete information about model fit. As we
visualize below, both human and model response biases vary
roughly as sinusoidal functions. This means that a model can be
mirrored along the vertical axis and yet result in a high
correlation under our analysis. In fact, CLIP ViT-B16 exhibits
this behavior (see Fig. 6, left). But even when the model and
human bias curves are mostly aligned in phase and frequency,
small misalignments can heavily penalize correlation values. Our
subsequent analysis addresses these shortcomings.

We next asked whether our models could explain response
inhomogeneities in color and orientation working memory. A
striking finding from orientation memory experiments is that
recall for nearly horizontal and vertical orientations is exagger-
ated away from these cardinal orientations (repulsion). At the
same time, responses are biased toward the oblique orientations
(attraction)26. In color working memory, there exists a set of
“focal” colors that responses are biased toward27.

In both color and orientation, we find a qualitative correspon-
dence between the shape of the human bias function and at least a
subset of the models (Fig. 6). In the case of orientation, we find
the closest correspondence between human data and the VGG-19
model. To quantify this, we fit sine waves to human data and each
of the models (Table 2). While the amplitude is larger for the
human data than any of the models, both the phase and
frequencies are closely matched for both VGG-19 and CLIP
ResNet-50. Interestingly, the CLIP ViT-B16 model exhibits an
attraction bias toward the cardinal orientations, rather than
repulsion, suggesting convolutional architectures may contain a
more human-like representational bias than vision transformers
in this particular stimulus domain.

Also note that we produced the results in the left panels of
Fig. 6 by fitting to set-size 1, alone, whereas other reported results
on orientation relied on fits to all set-sizes simultaneously. The
reason for this choice was that human responses become noisier
with larger set-sizes (see noise ceilings in Fig. 5), and the strong
repulsion bias seen at set-size 1 gets washed out. By fitting set-size
1 separately, we can thus get a clearer sense of a DNN’s ability to
explain this bias. However, see Supplementary Fig. S6 for results
when using a model fit to all set-sizes simultaneously. We found
that the results changed only for CLIP ResNet-50.

We next examined set-size effects in the orientation working
memory dataset, which included four set sizes (1, 2, 4, and 8). We
compared the mean absolute error per set-size between humans
and our models and found all best-fit models to exhibit a set-size
effect (Fig. 7a). We further investigated what causes mean error in
our models to vary as a function of set-size. We find that the
effect is caused by the sparsity of activations in the DNN layers.
As more objects are added to the background of the image, more
activations become non-zero, causing the range of similarity
values in the response options to shrink (Fig. 7b). Since noise with
fixed variance is added to these values, responses become more
easily corrupted with increasing set-sizes. This explanation bears
some resemblance to neural resource models of working
memory8, which appeal to divisive normalization between
neurons in a population as the mechanism to control neural
resource allocation across items in the display. However, these
neural population models differ in that they predict a relatively
constant overall level of activation, whereas the DNN models we
examined increase their activation with set-size.

Next, we considered inter-item effects5. Found strong evidence
that memory errors for one item in a display depend on the other
items they appeared with. A specific hypothesis they tested was

Fig. 4 Extended cross-model comparison on Scene Wheels dataset.
Marker radius is proportional to a number of trainable parameters.
ConvNext models labeled `1k' were trained on the 1000-way ImageNet
classification dataset and the others were trained on the 22,000-way
version.
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Fig. 5 Results of the Spearman correlation analysis after refitting our models to color and orientation stimuli. Blue bars indicate p < 0.05.

Fig. 6 Comparison of humans’ and models’ average response bias in orientation and color memory tasks. a Orientation experiment (set-size 1). b Color
experiment (set-size 3). Red solid lines are sine wave fits to the data.
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that people store hierarchical representations of the displays. At
the upper level, they may record the overall level of dissimilarity
between the items, while at a lower level, they record item-specific
details. To test this hypothesis, they computed a correlation
coefficient between two measurements. Specifically, for each trial,
the two measurements were: (1) the circular variance of the three
hues in the target display and (2) the circular variance of the three
hues chosen by the participant. Intuitively, the correlation
coefficient summarizes how homogeneity of hues within a display
relates to the homogeneity of the responses. Importantly, the
analysis only included trials for which participants were far off on
all their responses (>45°). They found a significant correlation of
0.4. When we conducted the same analysis with our selected
models, we found an insignificant correlation near zero for all of
them, suggesting that our models do not capture this aspect of
human behavior.

Finally, we asked whether the same or similar layers within
each model provided the best explanations across experiments.
For VGG-19, the best-fit layer for the Scene Wheels dataset was
layer 30, but for color and orientation, it was 7 and 19,
respectively. For CLIP ResNet-50, the best layer was 24 for Scene
Wheels, 11 for color and 16 for orientation. For CLIP ViT-B16,
the best layer was 12 for Scene Wheels, 23 for color, and 11 for
orientation. (When fitting to orientation set-size 1 alone, the best-
fit layer for CLIP ResNet-50 changed to 15.) Thus, for both
convolutional architectures, the best layer was deeper for natural
images than both the artificial experiments, but for the vision
transformer-based architecture, this was not the case.

Discussion
In this work, we combined several recent advances from cognitive
science and AI to build scalable models of visual memory. We
sought to build models that are not restricted to tasks with low-
dimensional stimuli and/or simple feature reports but can make
more general predictions. In particular, we sought to understand
what features are stored in memory over the short term after

viewing natural images. We then asked whether similar features
are stored when viewing the kinds of sparse, artificial displays
typically used in working memory experiments. We constrained
our search for human-like features to two classes of pre-trained
DNN, ImageNet classifiers and CLIP models.

In a continuous report task with GAN-generated, naturalistic
indoor scenes, we found that our best models were able to capture
people’s memory errors better than several reasonable baselines.
Surprisingly, layers from the same DNN architectures were also
able to reproduce some important findings in the artificial sti-
mulus domains of orientation and color, namely set-size effects,
the repulsion bias in orientation memory, and the focal color bias
in color memory. By contrast to prominent models of VWM, our
TCC-based models explain responses purely on the basis of
psychological similarity and representational geometry, and do
not appeal to notions of information load. For example, set-size
effects in multi-item displays are usually explained in terms of a
limited resource (specified as bits, slots, or spike counts) allocated
across items, and do not appeal to any notion of representational
geometry. At the same time, these distinct classes of explanation
may also be compatible. For instance, regularization schemes
applied to DNN activations (e.g. L2 norm) can be seen as
imposing a resource constraint, but they also change the repre-
sentational geometry in critical ways. Possible equivalences
between load- and similarity-based explanations open interesting
avenues for future research.

Our models were built on the hypothesis that the features
stored in VWM are noisy or compressed versions of features
computed when initially perceiving a stimulus. However, this
hypothesis could be tested in a more direct way by using neural
recordings. Previous work has shown that when DNNs are
trained to predict neural activity directly (e.g., using fMRI data),
the learned representations recapitulate key behaviors and cap-
abilities of human vision. For instance, when trained on activity
from face-selective areas, the resulting representations are able to
solve non-trivial segmentation problems, picking out faces in
complex scenes28,29. The outputs of these networks, or even the
fMRI data used to train them, could be directly swapped in for the
features we used in the present work.

Finally, our approach may prove useful in clarifying some
longstanding debates about the nature of VWM. In particular,
our method allows us to ask how biases and capacity limits in
certain artificial paradigms fit into a larger picture that includes
behavior in more natural settings and tasks. Given that many
important findings about VWM come from unnatural stimuli, an
important baseline to test is whether adaptation to the demands
of our natural environment explains these phenomena. Our
results shed light on this and related questions. We found that a
TCC model using the right DNN features could explain both set-
size effects and response biases in color and orientation memory,
despite only being trained to classify natural images. More work is

Table 2 Parameters recovered from least-squares fit of sine
wave to both human and model orientation response-bias
data in Fig. 6.

Model Amplitude Phase (deg) Frequency

CLIP RN50 0.22 6.53 4.0
CLIP ViT-B16 −2.58 5.38 4.0
VGG-19 0.83 −13.15 4.0
Human 4.01 −0.22 4.0

Specifically, we fit the function y ¼ A sinðθxþ bÞ, where A, θ, b are amplitude, frequency, and
phase, respectively. Note that because the stimulus space is circular, repeating every π radians,
the frequency must be a multiple of 2. Fits were estimated using the curve_fit function from
the SciPy Python package.

Fig. 7 Analysis of set-size effects in TCC models. a Comparison of human and model mean errors within each set-size in the orientation memory task.
b Raw similarity scores (per set-size) for our three selected models between a target with a horizontal orientation and all response options.
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necessary to determine whether these correspondences are simply
coincidental or provide a satisfying explanation of human beha-
vior. Nonetheless, our work constitutes a necessary first step
toward more flexible and general models of visual memory that
can accommodate findings from both natural and artificial sti-
mulus domains.

Data availability
We provide a repository that includes copies of the human data in all experiments. It can
be found at https://github.com/c-j-bates/scaling-models-of-vwm-to-natural-images/tree/
main. Data for the Scene Wheels experiment were downloaded from https://osf.io/
h5wpk/30. Data for the orientation memory experiment were downloaded from https://
osf.io/s7dhn/31. Data for the color memory experiment were obtained directly from the
authors.

Code availability
Code to reproduce all analyses can be found in our repository: https://github.com/c-j-
bates/scaling-models-of-vwm-to-natural-images/tree/main. The DOI for the audited
release is https://zenodo.org/records/10223343.
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