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ABSTRACT
BACKGROUND: Anhedonia, the loss of pleasure, is prevalent and impairing. Parsing its computational basis
promises to explain its transdiagnostic character. One manifestation of anhedonia, reward insensitivity, may be linked
to limited memory. Furthermore, the need to economize on limited memory engenders a perseverative bias toward
frequently chosen actions. Anhedonia may also be linked with deviations from optimal perseveration for a given
memory capacity, a pattern that causes inefficiency because it results in less reward for the same memory cost.
METHODS: To test these hypotheses, we applied a theory of optimal decision making under memory constraints that
decomposes behavior into a memory component and an efficiency component. We applied this theory to behavior on
the Probabilistic Reward Task, a reward learning paradigm that has been validated in anhedonia, and performed
secondary analysis of a randomized controlled trial testing kappa opioid receptor (KOR) antagonism for anhedonia
(n = 24 KOR; n = 31 placebo), as well as analyses of 3 other datasets (n = 100, 66, 24, respectively). We fit a resource-
bounded reinforcement learning model to behavior.
RESULTS: Across clinical and nonclinical populations, anhedonia was associated with deficits in efficiency but not
memory. The reinforcement learning models demonstrated that deficits in efficiency arise from the inability to
perseverate optimally. KOR antagonism, which likely elevates tonic dopamine, increases both memory and efficiency,
and the model demonstrated that this arises from increased reward sensitivity and perseveration.
CONCLUSIONS: Therefore, KOR antagonism has distinct cognitive effects, only one related to anhedonia. These
findings have potential implications for the applications of KOR antagonists.

https://doi.org/10.1016/j.bpsc.2025.05.011
Anhedonia, the loss of pleasure or lack of reactivity to plea-
surable stimuli, is observed in many psychiatric disorders (1–9),
suggesting a common mechanism across disorders. The most
systematic attempts to formalize this common mechanism
have utilized concepts from reinforcement learning (10). Early
models posited that anhedonia corresponds to a reduction in
reward sensitivity (11,12), but the predictions of these models
have not been consistently validated, suggesting a more
complex picture (13). Here, we argue that one neglected
source of complexity is the interplay between reward sensi-
tivity and cognitive capacity limits.

In reinforcement learning theory, states (e.g., stimuli,
context) are mapped to actions by a learned policy. The
amount of memory needed to store a policy is dictated by the
mutual information between states and actions; any physical
system (such as the brain) has a limited memory capacity. One
implication of limited capacity is reward insensitivity, and thus
some aspects of anhedonia may arise from cognitive resource
limitations.

Under capacity limits, policies must be compressed by
discarding some state information (14–16). This results in the
tendency to reuse frequently chosen actions across multiple
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states—a form of perseveration, the tendency to repeat ac-
tions independently of their reinforcement history. The theory
of policy compression is normative: It specifies an optimal level
of perseveration for a given capacity limit. Empirically,
compression strategies may differ, with some policies yielding
more reward than others for the same cost. We refer to de-
viations from optimal perseveration as inefficiency because it
results in a suboptimal use of finite memory (less reward for the
same memory utilization). This phenotype is conceptually
distinct from capacity and can be measured separately. We
argue here that capacity and efficiency may be key phenotypes
for understanding cognitive disturbances in anhedonia. We
show that these can be estimated from behavioral data on a
widely used behavioral assay, the Probabilistic Reward Task
(PRT), and that they reveal new aspects of anhedonia that
otherwise would have been invisible.

We also address the underlying neural mechanisms and
treatment implications. Our previous work suggested that tonic
dopamine should determine the allocation of cognitive re-
sources for task performance based on reward rate (17,18).
Therefore, reduction in tonic dopamine should produce
insensitivity of task performance to reward rate (19). It stands
gical Psychiatry. Published by Elsevier Inc. All rights are reserved,
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to reason that increasing tonic dopamine should increase
reward sensitivity. We demonstrate that this is consistent with
the effects of kappa opioid receptor (KOR) antagonism, which
elevates tonic dopamine (20–24). We found that efficiency also
increases, suggesting that tonic dopamine may not only
determine the amount of resources available but also the ef-
ficiency of their allocation. Mechanistically, this might be
implemented through dopamine-dependent changes in
learning rate for perseveration. Finally, we found that anhe-
donia was associated with changes in efficiency but not
memory, highlighting the clinical utility of distinguishing these
computational phenotypes.

METHODS AND MATERIALS

Probabilistic Reward Task

ThePRT is a reward-based learning task that has been validated
in anhedonia (25,26). On each trial, participants are presented 1
of 2 perceptually similar stimuli and asked to report the stimulus
that they perceived. Participants completed either 200 trials
(KOR dataset) or 300 trials (all other datasets). The critical
feature of the task was that correct responses for one stimulus
yielded reward with probability 60%, and correct responses for
the other stimulus yielded reward with probability 20% (stimuli/
responses counterbalanced across participants).

Policy Compression: A Capacity Limit on Decisions

Policy compression is an application of rate-distortion theory,
a subdiscipline of information theory, that treats decision
making as communication across a capacity-constrained
channel (14,16). Under policy compression, state information
(stimuli, in our case) is transmitted across a channel to produce
a policy, p(a|s), a probability distribution of actions conditioned
on state. We assume that participants cannot perfectly trans-
mit information across this channel but must keep it below a
capacity constraint. This requires that participants trade-off the
utility of their decisions with the cognitive costs, which we
define as the mutual information between states and actions,
or the policy complexity. In general, policies that result in
higher reward incur a greater memory cost. We treat policy
complexity as the memory applied to the task and the differ-
ence between optimal reward and empirical reward, for a given
policy complexity, as the efficiency of memory usage.

Reinforcement Learning Modeling

We constructed the following resource-bounded Q-learning
model, motivated by policy compression. It estimates action
values, Q(s,a), and the marginal action probability, P(a), to
generate a policy and contains 3 parameters (alearn, apersev, and b):

DQðs; aÞ¼ alearn½r2Qðs; aÞ�

DPðaÞ¼ apersev½pðajsÞ2PðaÞ�
pðajsÞfexp½ðbQðs; aÞ1 logðPðaÞÞÞ� (1)

where r = 1 if the current trial is rewarded and 0 otherwise.
This model contains a mechanism to allow KOR treatment
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
to multiplicatively scale apersev and b in the following manner:

apersev ¼ apersev;baseline$10spersev;treatment

b ¼ bbaseline$10
sbeta;treatment

(2)

For the online study, we scaled parameters as a function of the z-
scored anhedonia inventory scores (using the Snaith-Hamilton
Pleasure Scale [SHAPS]) in the following manner:

apersev ¼ apersev;baseline$10spersev$SHAPS

b ¼ bbaseline$10
sbeta$SHAPS

(3)

We initialized Q(s, a) at 0 and P(a) at 0.5, and we assumed scaling
terms equaled 0 on sessions without treatment. We included all
trials for analysis. Models were fit with the probabilistic pro-
gramming language Stan.

RESULTS

Policy Complexity and Efficiency in Anhedonia After
KOR Antagonism

We performed a secondary analysis of an 8-week, multicenter,
placebo-controlled, double-blind randomized trial to test the
effects of KOR antagonism on anhedonia (Figure 1A) (27,28).
Because this trial identified a significant treatment effect of
KOR antagonism for anhedonia (as measured by SHAPS), we
sought to understand the cognitive basis of this improvement.
We analyzed a total of 55 participants (KOR antagonist group:
n = 24; placebo group: n = 31) who completed both baseline
and posttreatment PRT. Owing to previously reported baseline
differences in anhedonia between the 2 groups (mean SHAPS 6
SD: placebo 33.03 6 5.54; KOR 37.29 6 8.89; p = .0338), we
analyzed the pretreatment groups separately.

The PRT is a reward-based decision-making task that asks
participants to discriminate 2 similar stimuli (25,26) (Figure 1B).
Unbeknownst to participants, one of the 2 stimuli yields reward
more often than the other when correctly identified. According
to the theory of policy compression (16), performance in this
task (average reward) depends on the amount of information
that participants encode about the underlying state (i.e., the
stimulus identity), quantified by the mutual information be-
tween states and actions—a participant’s policy complexity.
Each participant is assumed to have a capacity limit (upper
bound on policy complexity), which delimits their achievable
performance. If participants maximally utilize their capacity,
their average reward should fall along an optimal reward-
complexity frontier, as shown in Figure 2A, B. In the PRT,
maximal reward can be obtained at a policy complexity of 1 bit,
corresponding to a policy that perfectly discriminates the 2
stimuli. At the other extreme, a participant with no capacity will
generate a policy that ignores the stimuli entirely. Participant
policies tend to lie close to the optimal frontier, indicating that
they are utilizing most of their capacity. At the low end of the
policy complexity range, participant policies fall off the optimal
frontier (Figure 2F, G), indicating underutilization of resources
(inefficiency), a pattern that has also been observed in previous
studies (15,29). Consistent with theory, participants with lower
policy complexity tended to perseverate more (effect of policy
025; -:-–- www.sobp.org/BPCNNI
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A Figure 1. Trial and task design. (A) Participants
were randomized to 8 weeks of placebo (n = 31) or a
kappa opioid receptor (KOR) antagonist (n = 24) and
completed the Probabilistic Reward Task (PRT) at
baseline and at week 8. (B) On each trial of the PRT,
participants fixated on a cross, followed by the
presentation of a face without a mouth, followed by
either a short (11.5 mm) or long (13 mm) mouth in the
face. Participants responded by pressing one of the
2 keyboard keys and completed 200 trials in 2
blocks of 100 trials. The bottom right shows an
example reward schedule where the long stimulus is
rewarded more often than the short stimulus. The
mapping between response, stimulus, and reward
was counterbalanced between participants.
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complexity on probability of choosing the richer option,
coefficient = 20.251, p = .0188). See Figure S1 for further
intuition into the relationship between policy complexity and
behavior.

At 8 weeks, placebo treatment resulted in a decrease in
both policy complexity and reward, while KOR antagonism
yielded an increase in both (Figure 2C). This resulted in sig-
nificant between-group differences for both policy complexity
(mean change in policy complexity [posttreatment minus
baseline] 6 SEM: placebo, 20.0245 6 0.0141; KOR, 0.0281 6
0.0211; p = .0362) (Figure 2D) and reward (mean change in
reward [posttreatment minus baseline] 6 SEM: placebo,
20.0165 6 5.61 3 1023; KOR, 0.0154 6 6.53 3 1023;
p = 4.81 3 1024) (Figure 2E). Following treatment, the KOR
group also became significantly more efficient compared with
the placebo group (mean change in inefficiency [posttreatment
minus baseline] 6 SEM: placebo, 0.0130 6 4.80 3 1023;
KOR, 20.0109 6 4.04 3 1023, p = 5.68 3 1024) (Figure 2H).
Increased efficiency can be interpreted as a tendency to more
optimally select the richer option (Figure S1B). Consistent with
this interpretation, we found that participants were more optimal
in selecting the richer option after KOR treatment (posttreatment
minus baseline 6 SEM: placebo, 0.0502 6 0.0221;
KOR, 20.0448 6 0.0196, p = 2.96 3 1023) (Figure S2). Thus,
Biological Psychiatry: Cognitive Neuroscien
KOR antagonism increased average reward through a combi-
nation of increasing both policy complexity and efficiency.

Policy compression makes the additional prediction that
more complex policies should result in slower response times
because the brain must inspect more bits to find a coded state
(16,18,30). We found that KOR antagonism, relative to pla-
cebo, slowed participants down (mean change in response
times [posttreatment minus baseline] 6 SEM: placebo, 259.3 6
23.4 ms; KOR, 13.6 6 20.4 ms; p = .0274).

To better understand how KOR treatment changed the
relationship between inefficiency and policy complexity, we fit
a linear mixed-effects model predicting inefficiency as a
function of policy complexity, treatment, and time. We identi-
fied 2 relevant effects: a significant treatment 3 time inter-
action (coefficient = 20.0405, p = 4.23 3 1025), which has the
effect of lowering the intercept, and a significant policy
complexity 3 treatment 3 time interaction (coefficient =
0.187, p = 1.76 3 1023), which has the effect of increasing the
slope. The combination of the change in intercept and slope
has the net effect of increasing efficiency as a function of
policy complexity, revealing that KOR treatment increases ef-
ficiency independent of its changes to complexity. We will
develop this insight further with our reinforcement learning
modeling. Overall, these results suggest 2 orthogonal effects
ce and Neuroimaging - 2025; -:-–- www.sobp.org/BPCNNI 3
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of KOR treatment: increases in complexity and increases in
efficiency. Stated another way, participants gain increased
cognitive resources and make better use of those resources.
Reinforcement Learning Model of KOR Antagonism

We developed a cost-sensitive reinforcement learning model
to gain insight into how KOR antagonism affects decision
making. We adapted a Q-learning model, which is ubiquitous
in the reinforcement learning literature (31). This model esti-
mates the expected reward associated with each action for
each stimulus (called Q-values) and updates these estimates
by learning from the outcome (presence or absence of reward).
Because the optimal policy under policy compression contains
a marginal action probability term to engender perseveration
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
(state-independent actions), we augmented our model with a
marginal action probability term that was similarly estimated on
a trial-by-trial basis. Our model contained a reward learning
rate, alearn, to govern the learning of action values; a persev-
eration learning rate, apersev, to govern the learning of the
marginal action probability; and a reward sensitivity parameter,
b, that determines the balance between action values and
perseveration in driving behavior. The b parameter is linked to
capacity, where higher capacity is associated with higher
values of b. Given the structure of our model, b is equivalent to
a parameter scaling reward magnitude, as has been posited in
anhedonia (12).

To model the effects of treatment, we allowed KOR and
placebo to scale these parameters. Based on formal model
comparison (Table S1), we selected a model that separately
025; -:-–- www.sobp.org/BPCNNI
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scaled the perseveration learning rate, apersev, and the reward
sensitivity, b, as a function of treatment. We confirmed that our
model could recover apersev and b, the parameters of interest
(Table S2). To provide confidence in the ability of our model to
capture key characteristics of the data, we first fit the model to
participant data and then had the model perform the PRT (using
the parameter estimates for each participant) to generate a
synthetic dataset (Figure S8). This simulated dataset captured
all key features of our data (see the Supplement).

Having confirmed that our model could generate realistic
data and recover parameters of interest, we turned our attention
to parameter estimates to better understand how treatment
affected decision making. We found that placebo and KOR
antagonism scaled the perseveration learning rate, apersev,
in opposite directions (posterior 95% credible interval;
placebo, 22.96 to 20.82; KOR, 0.61 to 1.96) (Figure 3A). The
difference between KOR antagonism and placebo corresponds
to the net effect of treatment on apersev, which was positive and
excluded 0, showing that treatment increased perseveration
(difference in posterior 95% credible interval [KOR minus pla-
cebo], 1.77 to 4.32) (Figure 3B). We similarly found that placebo
and KOR antagonism scaled the reward sensitivity, b, in
opposite directions (posterior 95% credible interval;
placebo, 20.143 to 20.050; KOR, 0.037 to 0.138) (Figure 3C),
with a treatment effect that was positive and excluded 0 (dif-
ference in posterior 95% credible interval [KOR minus placebo],
0.114 to 0.254) (Figure 3D).

To gain insight into how scaling these parameters affects
decision making, we simulated datasets where we only
changed parameters of interest (Figure S3 and Table S3).
Increasing only apersev produces an increase in efficiency and a
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small decrease in policy complexity. The increase in efficiency
manifests as a change in the intercept, but not the slope, of the
relationship between inefficiency and policy complexity.
Increasing only b produces a relatively large increase in policy
complexity, which is consistent with the theoretical link be-
tween larger b and increased capacity. It also produces an
increase in efficiency for low-complexity policies. Increasing
both apersev and b, like we find for KOR antagonism, produces
both an increase in policy complexity and an increase in effi-
ciency. The increase in efficiency manifests as a change in
both the intercept (decrease) and the slope (increase) of the
relationship between inefficiency and policy complexity, like
our empirical findings.

We gained insight into the relationship between KOR
antagonism and optimal behavior by visualizing the relation-
ship between apersev, b, and reward, while holding alearn fixed
(Figure 3E). As b increases, for the optimal apersev, the net
reward obtainable also increases, consistent with our theory
linking higher b to higher capacity and higher capacity to
greater reward. We also find that increasing perseverative
learning is most beneficial at lower values of b (i.e., lower ca-
pacity), consistent with the idea that perseveration is increas-
ingly optimal as participants become more resource limited. In
Figure 3F, we can see that the effect of KOR antagonism is to
shift both apersev and b closer to an optimal regime. A notable
finding is the increased apersev at baseline for the placebo
group relative to the KOR group. This is consistent with the
baseline difference in SHAPS between these groups, with the
placebo group having lower SHAPS: The larger apersev esti-
mates for this group are closer to the optimal regime and are
consistent with less severe anhedonia.
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Policy Complexity and Efficiency as a Function of
Hedonic Tone

Because the original study identified a significant improvement
in SHAPS following KOR antagonism (27), we sought to
identify which mechanism—increased policy complexity,
increased efficiency, or both—is associated with anhedonia.
We first examined the relationship between hedonic tone and
reward learning in a nonclinical population. We recruited 100
participants from Amazon Mechanical Turk and implemented a
version of the PRT suitable for online delivery (32). Participants
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completed SHAPS and reported a wide range of scores (mean
SHAPS 6 SD: 11.45 6 6.54, range 0–36). We show the
reward-complexity relationship in Figure 4A. For visualization
purposes only, we performed a median split of participants on
the basis of SHAPS.

Unlike the effects of KOR antagonism, we found that
SHAPS did not predict policy complexity (coefficient =
25.24 3 1023, p = .241). However, we did identify a significant
relationship with inefficiency. We fit a linear regression pre-
dicting inefficiency as a function of SHAPS and policy
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complexity and identified a significant intercept change (co-
efficient for effect of SHAPS = 9.55 3 1023, p = 6.54 3 1023)
but not a significant slope change (coefficient for SHAPS 3

policy complexity interaction = 20.0182, p = .394). Given our
simulations exploring the effects of changing parameters
(Figure S3), a change of intercept without a change of slope is
consistent with hedonic tone affecting perseveration (apersev)
and not capacity (b).

We reanalyzed two previous PRT datasets and found similar
effects on the relationship between inefficiency and policy
complexity (Figure S6). The first was a transdiagnostic sample
of patients (control group: n = 25; clinical group: n = 41, 18 with
bipolar disorder, 23 with major depressive disorder) (33,34).
These groups differed significantly in baseline anhedonia
(mean anhedonic Beck Depression Inventory-II subscore 6
SD: control, 0.72 6 1.02; clinical, 5.22 6 3.78, p = 2.22 3

1027; mean Mood and Anxiety Symptom Questionnaire
anhedonic depression subscale 6 SD: control, 51.5 6 12.6;
clinical, 77.1 6 19.3, p = 1.45 3 1027). Consistent with dif-
ferences in anhedonia, when we analyzed inefficiency as a
function of policy complexity and group, we identified a sig-
nificant intercept difference (coefficient for clinical group =
5.29 3 1023, p = .022) without a concurrent slope difference
(coefficient for policy complexity 3 clinical group
interaction = 21.71 3 1023, p = .443). We also found no dif-
ference in policy complexity between the 2 groups (mean
policy complexity 6 SEM: control, 0.371 6 0.043; clinical,
0.333 6 0.024; p = .412).

The second dataset that we analyzed tested the hypoth-
esis that decreased dopamine impairs reward learning and
leads to anhedonia (35,36). In this double-blind study, par-
ticipants received either placebo or low-dose pramipexole,
thought to reduce phasic dopamine release, and performed
the PRT (placebo group: 13; pramipexole group: 11) (37).
The original study found that pramipexole administration led
to impaired reward learning. When we analyzed inefficiency
as a function of policy complexity and treatment, we iden-
tified a significant intercept effect (coefficient for treatment =
7.82 3 1023, p = .043) without a significant slope effect
(coefficient for policy complexity 3 treatment = 21.90 3

1023, p = .615). We also found no difference in policy
complexity as a function of treatment (mean policy
complexity: placebo, 0.297 6 0.043; pramipexole, 0.319 6
0.057; p = .757).
Reinforcement Learning Model of Hedonic Tone

Next, we fit a reinforcement learning model to the nonclinical
population dataset. This model was similar to the one that we
used for the KOR dataset, except now we allowed apersev and b
to scale as a function of SHAPS. We found that increases in
SHAPS were associated with less perseveration (posterior 95%
credible interval, 20.739 to 20.046) (Figure 4C). In contrast,
anhedonia had no effect on modulating b, in contrast to KOR
antagonism (posterior 95% credible interval, 20.097 to 0.066)
(Figure 4D). In parameter space, the net effect of an increase in
SHAPS is to move participants away from an optimal regime
(Figure 4E). Taken together, these data support the notion that
hedonic tone spans the axis of efficiency, not capacity.
Biological Psychiatry: Cognitive Neuroscien
DISCUSSION

We leveraged a theory of resource-limited reinforcement
learning to shed light on the cognitive structure of anhedonia.
Building on previous work demonstrating impairments in
reward sensitivity, we decomposed these impairments into
separate effects of policy complexity (state dependence of an
action policy) and efficiency (utilization of cognitive resources).
We found that KOR antagonism affected both of these mea-
sures, whereas anhedonia was associated only with reduced
efficiency.

The finding that anhedonia was not associated with reduced
complexity is surprising, in part because complexity de-
termines reward sensitivity, and reward insensitivity appears to
be the cardinal feature of anhedonia [but see (13) for more
nuance]. There are several explanations for this apparent
disconnect. One is that the subjective experience of anhedonia
may be more related to the psychological concept of liking, the
pleasure associated with reward, rather than wanting, the
motivation furnished by reward learning (38), although deficits
in both liking and wanting play a role in anhedonia (39) [but see
(40,41) for challenges in measuring liking]. In our paradigm,
reward sensitivity is related to wanting, which would render the
PRT an inappropriate assay to measure deficits in liking.
Furthermore, SHAPS is not designed to disambiguate these
different aspects of reward processing, but newer scales such
as the Dimensional Anhedonia Rating Scale (42), the Temporal
Experience of Pleasure Scale (43), and the Positive Valence
Systems Scale (44) provide insight into the multidimensional
nature of anhedonia. It should be stated that the PRT’s suc-
cess in capturing deficits in reward learning in anhedonia
strongly suggests that deficits in wanting are critical to un-
derstanding anhedonia, even if the link between the subjective
experience of anhedonia and wanting is not immediate.

Our finding that anhedonia was associated with reduced
efficiency has potential clinical relevance. Under our compu-
tational framework, perseveration is closely related to habits,
because habits can be similarly thought of as state-
independent actions within a particular context (45,46). A
prediction of our findings is that anhedonia may not only
manifest as a deficit in perseveration but may also manifest as
a deficit in habit formation. Intriguingly, recent work on the
origin of habits has revealed that they are largely divorced from
reward (47). If true, this would highlight a cognitive deficit in
anhedonia unrelated to reward processing. Together, our
findings motivate a future research program that studies habit
formation in anhedonia, which is important both for better
understanding this symptom and because it may form the
basis of clinically relevant behavioral interventions.

A key limitation is that our application of policy compression
assumes no perceptual ambiguity. This assumption is imper-
fect because, by design, the PRT introduces perceptual am-
biguity with a combination of perceptually similar stimuli and
short stimulus durations. However, perceptual ambiguity does
not fully capture behavior on the PRT (Figure S7). Participants
consistently perform better than a policy that assumes perfect
discrimination, subject to perceptual ambiguity. This difference
is because participants gravitate toward the more rewarding
response, a bias that arises during decision making. The bias
accounts for the difference between policy compression and
ce and Neuroimaging - 2025; -:-–- www.sobp.org/BPCNNI 7
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perceptual ambiguity curves, which are equal only at perfect
performance. This bias is normatively justified under policy
compression, which therefore provides the computational
language needed to understand behavior, both in health and
anhedonia. That said, the most likely descriptor of behavior is a
combination of perceptual ambiguity and policy compression.
One reason that policy compression remains relevant is that
information transmission across synapses is metabolically
costly, incentivizing the brain to limit information transmission
(48). Note that this cost is also related to perceptual perfor-
mance, which is subject to similar information-theoretical costs
(17,49). Future studies should parameterize perceptual ambi-
guity to better resolve its contribution to behavior so that the
exact contribution of policy compression can be better isolated.

Conclusions

We leveraged computational principles to identify 2 mecha-
nisms of action of KOR antagonism—one related to anhedonia
(increase in efficiency) and one unrelated to anhedonia (in-
crease in policy complexity). We hypothesize that the increase
in complexity can be leveraged for other indications, including
possibly cognitive deficits in psychosis. Our results provide a
clear example of the potential for computational psychiatry to
provide transdiagnostic insights that integrate across levels of
analysis.
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