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Abstract

Probability theory forms a natural framework for explaining the impressive success of
people at solving many difficult inductive problems, such as learning words and categories,
inferring the relevant features of objects, and identifying functional relationships.
Probabilistic models of cognition use Bayes’s rule to identify probable structures or
representations that could have generated a set of observations, whether the observations
are sensory input or the output of other psychological processes. In this chapter we
address an important question that arises within this framework: How do people infer
representations that are complex enough to faithfully encode the world but not so complex
that they “overfit” noise in the data? We discuss nonparametric Bayesian models as a
potential answer to this question. To do so, first we present the mathematical background
necessary to understand nonparametric Bayesian models. We then delve into
nonparametric Bayesian models for three types of hidden structure: clusters, features, and
functions. Finally, we conclude with a summary and discussion of open questions for future
research.
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Introduction
Probabilistic models of cognition explore the

mathematical principles behind human learning
and reasoning. Many of the most impressive
tasks that people perform—learning words and
categories, identifying causal relationships, and
inferring the relevant features of objects—can
be framed as problems of inductive inference.
Probability theory provides a natural mathematical
framework for inductive inference, generalizing
logic to incorporate uncertainty in a way that can
be derived from various assumptions about rational
behavior (e.g., Jaynes, 2003).

Recent work has used probabilistic models to
explain many aspects of human cognition, from
memory to language acquisition (for a representa-
tive sample, see Chater and Oaksford, 2008). There

are existing tutorials on some of the key mathemati-
cal ideas behind this approach (Griffiths and Yuille,
2006; Griffiths, Kemp, & Tenenbaum, 2008a) and
its central theoretical commitments (Tenenbaum,
Griffiths, & Kemp, 2006; Tenenbaum, Kemp,
Griffiths, & Goodman, 2010a; Griffiths, Chater,
Kemp, Perfors, & Tenenbaum, 2010a). In this
chapter, we focus on a recent development in
the probabilistic approach that has received less
attention—the capacity to support both structure
and flexibility.

One of the striking properties of human cogni-
tion is the ability to form structured representations
in a flexible way: we organize our environment
into meaningful clusters of objects, identify dis-
crete features that those objects possess, and
learn relationships between those features, without
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apparent hard constraints on the complexity of
these representations. This kind of learning poses
a challenge for models of cognition: how can
we define models that exhibit the same capacity
for structured, flexible learning? And how do we
identify the right level of flexibility, so that we only
postulate the appropriate level of complexity? A
number of recent models have explored answers to
these questions based on ideas from nonparametric
Bayesian statistics (Sanborn, Griffiths, & Navarro,
2010; Austerweil & Griffiths 2013; see Gershman
and Blei 2012 for a review), and we review the key
ideas behind this approach in detail.

Probabilistic models of cognition tend to focus
on a level of analysis that is more abstract than that
of many of the other modeling approaches discussed
in the chapters of this handbook. Rather than trying
to identify the cognitive or neural mechanisms that
underlie behavior, the goal is to identify the abstract
principles that characterize how people solve induc-
tive problems. This kind of approach has its roots
in what Marr (1982) termed the computational level,
focusing on the goals of an information processing
system and the logic by which those goals are
best achieved, and was implemented in Shepard’s
(1987) search for universal laws of cognition and
Anderson’s (1990) method of rational analysis. But
it is just the starting point for gaining a more
complete understanding of human cognition—one
that tells us not just why people do the things they
do, but how they do them. Although we will not
discuss it in this chapter, research on probabilistic
models of cognition is beginning to consider how
we can take this step, bridging different levels of
analysis. We refer the interested reader to one of
the more prominent strategies for building such a
bridge, namely rational process models (Sanborn
et al., 2010).

The plan of this chapter is as follows. First, we
introduce the core mathematical ideas that are used
in probabilistic models of cognition—the basics of
Bayesian inference—and a formal framework for
characterizing the challenges posed by flexibility.
We then turn to a detailed presentation of the ideas
behind nonparametric Bayesian inference, looking
at how this approach can be used for learning
three different kinds of representations—clusters,
features, and functions.

Mathematical Background
In this section, we present the necessary math-

ematical background for understanding nonpara-
metric Bayesian models of cognition. First, we

describe the basic logic behind using Bayes’ rule
for inductive inference. Then, we explore two of
the main types of hypothesis spaces for possible
structures used in statistical models: parametric and
nonparametric models.1 Finally, we discuss what it
means for a nonparametric model to be “Bayesian”
and propose nonparametric Bayesian models as
methods combining the benefits of both parametric
and nonparametric models. This sets up the remain-
der of the article, where we compare the solution
given by nonparametric Bayesian methods to how
people (implicitly) solve this dilemma when learn-
ing associations, categories, features, and functions.

Basic Bayes
After observing some evidence from the envi-

ronment, how should an agent update her beliefs
in the various structures that could have produced
the evidence? Given a set of candidate structures
and the ability to describe the degree of belief in
each structure, Bayes’s rule prescribes how an agent
should update her beliefs across many normative
standards (Oaksford and Chater, 2007; Robert,
1994). Bayes’s rule simply states that an agent’s
belief in a structure or hypothesis h after observing
data d from the environment, the posterior P(h|d),
should be proportional to the product of two terms:
her prior belief in the structure, the prior P(h), and
how likely the observed data d would be had it
been produced by the candidate structure, called the
likelihood P(d |h). This is given by

P(h|d) = P(d |h)P(h)∑
h′∈HP(d |h′)P(h′)

,

where H is the space of possible hypotheses or
latent structures. Note that the summation in the
denominator is the normalization constant, which
ensures that the posterior probability is still a
valid probability distribution (sums to one). In
addition to specifying how to calculate the posterior
probability of each hypothesis, a Bayesian model
prescribes how an agent should update her belief
in observing new data dnew from the environment
given the previous observations d

P(dnew|d) =
∑

h

P(dnew|h)P(h|d)

=
∑

h

P(dnew|h)
P(d |h)P(h)∑

h′∈HP(d |h′)P(h′)
.

The fundamental assumptions of Bayesian models
(i.e., what makes them “Bayesian”) are (a) agents ex-
press their expectations over structures as probabili-
ties and (b) they update their expectations according
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to the laws of probability. These are not uncon-
troversial assumptions in psychology (e.g., Bowers
and Davis 2012; Jones and Love 2011; Kahneman
et al. 1982; McClelland et al. 2010, but also look
at the replies Chater et al. 2011; Griffiths, Chater,
Norris, & Pouget 2012; Griffiths, Chater, Kemp,
Perfors, & Tenenbaum 2010b). However, they are
extremely useful because they provide methodologi-
cal tools for exploring the consequences of adopting
different assumptions about the kind of structure
that appears in the environment.

Parametric and Nonparametric
One of the first steps in formulating a com-

putational model is a specification of the possible
structures that could have generated the observa-
tions from the environment, the hypothesis space
H. As discussed in the Basic Bayes subsection, each
hypothesis h in a hypothesis space H is defined
as a probability distribution over the possible
observations. So, specifying the hypothesis space
amounts to defining the set of possible distributions
over events that the agent could observe. To make
the model Bayesian, a prior distribution over those
hypotheses also needs to be specified.

From a statistical point of view, a Bayesian model
with a particular hypothesis space (and prior over
those hypotheses) is a solution to the problem
of density estimation, which is the problem of
estimating the probability distribution over possible
observations from the environment.2 In fact, it is
the optimal solution given that the hypothesis space
faithfully represents how the environment produces
observations, and the environment randomly se-
lects a hypothesis to produce observations with
probability proportional to the prior distribution.

In general, a probability distribution is a func-
tion over the space of observations, which can be
continuous, and thus is specified by an infinite
number of parameters. So, density estimation
involves identifying a function specified by an
infinite number of parameters, as theoretically,
it must specify the probability of each point in
a continuous space. From this perspective, a
function is analogous to a hypothesis and the
space of possible functions constructed by varying
the values of the parameters defines a hypothesis
space. Different types of statistical models make
different assumptions about the possible functions
that define a density, and statistical inference
amounts to estimating the parameters that define
each function.

The statistical literature offers a useful classifica-
tion of different types of probability density func-
tions, based on the distinction between parametric
and nonparametric models (Bickel and Doksum,
2007). Parametric models take the set of possible
densities to be those that can be identified with a
fixed number of parameters. An example of a para-
metric model is one that assumes the density follows
a Gaussian distribution with a known variance, but
unknown mean. This model estimates the mean of
the Gaussian distribution based on observations and
its estimate of the probability of new observations is
their probability under a Gaussian distribution with
the estimated mean. One property of parametric
models is that they assume there exists a fixed
set of possible structures (i.e., parameterizations)
that does not change regardless of the amount
of data observed. For the earlier example, no
matter how much data the model is given that is
inconsistent with a Gaussian distribution (e.g., a
bimodal distribution), its density estimate would
still be a Gaussian distribution because it is the only
function available to the model.

In contrast, nonparametric models make much
weaker assumptions about the family of possible
structures. For this to be possible, the number of
parameters of a nonparametric model increases with
the number of data points observed. An example
of a nonparametric statistical model is a Gaussian
kernel model, which places a Gaussian distribution
at each observation and its density estimate is the
average over the Gaussian distributions associated
with each observation. In essence, the parameters
of this statistical model are the observations, and
so the parameters of the model grow with the
number of data points. Although nonparametric
suggests that nonparametric models do not have any
parameters, this is not the case. Rather, the number
of parameters in a nonparametric model is not fixed
with respect to the amount of data.

One domain within cognitive science where the
distinction between parametric and nonparametric
models has been useful is category learning (Ashby
and Alfonso-Reese, 1995). The computational
problem underlying category learning is identifying
a probability distribution associated with each
category label. Prototype models (Posner and Keele,
1968; Reed, 1972), approach this problem para-
metrically, by estimating the mean of a Gaussian
distribution for each category. Alternatively, exem-
plar models (Medin and Schaffer, 1978; Nosofsky,
1986) are nonparametric, using each observation
as a parameter; each category’s density estimate for
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(a) (b) (c)Parametric Nonparametric Nonparametric Bayesian

Fig. 9.1 Density estimators from the same observations (displayed in blue) for three types of statistical models: (a) parametric, (b)
nonparametric, and (c) nonparametric Bayesian models. The parametric model estimates the mean of a Gaussian distribution from
the observations, which results in the Gaussian density (displayed in black). The nonparametric model averages over the Gaussian
distributions centered at each data point (in red) to yield its density estimate (displayed in black). The nonparametric Bayesian model
puts the observations into three groups, each of which gets its own Gaussian distribution with mean centered at the center of the
observations (displayed in red). The density estimate is formed by averaging over the Gaussian distributions associated with each
displayed in black.

an new observation is a function of the sum of the
distances between the new observation to previous
observations. See Figure 9.1(a) and 9.1(b) for
examples of parametric and nonparametric density
estimation, respectively.

One limitation of parametric models is that the
structure inferred by these models will not be the
true structure producing the observations if the
true structure is not in the model’s hypothesis
space. On the other hand, many nonparametric
models are guaranteed to infer the true structure
given enough (i.e., infinite) observations, which
is a property known as consistency in the statistics
literature (Bickel and Doksum, 2007). Thus, as
the number of observations increase, nonparametric
models have lower error than parametric models
when the true structure is not in the hypothesis
space of the parametric model. However, non-
parametric models typically need more observations
to arrive at the true hypothesis when the true
hypothesis is in the parametric model’s hypothesis
space. Box 1 describes the bias-variance trade-
off, which expounds this intuition and provides a
formal framework for understanding the benefits
and problems with each approach.

Putting Them Together: Nonparametric
Bayesian Models

Although people are clearly biased toward certain
structures by their prior expectations (like paramet-
ric models), the bias is a soft constraint, meaning
that people seem to be able to infer seemingly
arbitrarily complex models given enough evidence
(like nonparametric models). In the remainder of

the article, we propose nonparametric Bayesian
models, which are nonparametric models with
prior biases toward certain types of structures, as
a computational explanation for how people infer
structure but maintain flexibility.

Box 1 The bias-variance trade-off
Given that nonparametric models are guaran-
teed to infer the true structure, why would
anyone use a parametric model? Although it is
true that nonparametric models will converge
to the true structure, they are only guaranteed
to do so in the limiting case of an infinite
number of observations. However, people do
not get an infinite number of observations.
Thus, the more appropriate question for cogni-
tive scientists is how do people infer structures
from a small number of observations, and
which type of model is more appropriate for
understanding human performance? There are
many structures consistent with the limited and
noisy evidence typically observed by people.
Furthermore, when observations are noisy, it
becomes difficult for an agent to distinguish
between noise and systematic variation due to
the underlying structure, a problem known as
“overfitting.”

When there are many structures available
to the agent, as is the case for nonparametric
models, this becomes a serious issue. So, al-
though nonparametric models have the upside
of guaranteed convergence to the appropriate
structure, they have the downside of being
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Box 1 continued
prone to overfitting. In this box, we discuss
the bias-variance trade-off, which provides a
useful framework for understanding the trade-
off between ultimate convergence to the true
structure and overfitting.

The bias-variance trade-off is a mathemati-
cal result, which demonstrates that the amount
of error an agent is expected to make when
learning from observations can be decomposed
into the sum of two components (German,
Bienenstock, & Doursat, 1992; Griffiths
et al., 2010): bias, which measures how close
the expected estimated structure is to the true
structure, and variance, which measures how
sensitive the expected estimated structure is to
noise (how much it is expected to vary across
different possible observations). Intuitively,
increasing the number of possible structures by
using a larger parametric or a fully nonpara-
metric model reduces the bias of the model
because a larger hypothesis space increases the
likelihood that the true structure is available
to the model. However, it also increases the
variance of the model because it will be harder
to choose among them given noisy observations
from the environment. On the other hand,
decreasing the possible number of structures
available by using a small parametric model in-
creases the bias of the model, because unless the
true structure is one of the structures available
to the parametric model, it will not be able to
infer the true structure. Furthermore, using a
small parametric model reduces the variance,
because there are fewer structures available to
the model that are likely to be consistent with
the noisy observations. The bias-variance trade-
off presents a trade-off: reducing the bias of a
model by using a nonparametric model with
fewer prior constraints comes at the cost of less
efficient inference and increased susceptibility
to overfitting, resulting in larger variance.

How do people resolve the bias-variance
trade-off? In some domains, they are clearly
biased because some structures are much easier
to learn than others (e.g., linear functions in
function learning; Brehmer 1971, 1974). So in
some respects people act like parametric mod-
els, in that they use strong constraints to infer
structures. However, given enough training,
experience, and the right kind of information,
people can infer extremely complex structures

(e.g., McKinley and Nosofsky 1995). Thus, in
other respects, people act like nonparametric
models. How to reconcile these two views
remains an outstanding question for theories
of human learning. Hierarchical Bayesian mod-
els offer one possible answer, where agents
maintain multiple hypothesis spaces and infer
the appropriate hypothesis space to perform
Bayesian inference over, using the distribution
of stimuli in the domain (Kemp, Perfors, &
Tenenbaum, 2007) and the concepts agents
learn over the stimuli (Austerweil and Griffiths,
2010a). In principle, a hierarchical Bayesian
model could be formulated that includes
both parametric and nonparametric hypothesis
spaces, thereby inferring which is appropriate
for a given domain. Formulating such a model
is an interesting challenge for future research.

Nonparametric Bayesian models are Bayesian
because they put prior probabilities over the set
of possible structures, which typically include
arbitrarily complex structures. They posit prob-
ability distributions over structures that can, in
principle, be infinitely complex, but they are biased
towards “simpler” structures (those representable
using a smaller number of units), which reduces
the variance that plagues classical nonparametric
models. The probability of data under a structure,
which can be very large for complex structures
that encode each observation explicitly (e.g., each
observation in its own category), is traded off
against a prior bias toward simpler structures,
which allow observations to share parameters. This
bias toward simpler structures is a soft constraint,
allowing models to adopt more complex structures
as new data arrive (this is what makes these models
“nonparametric”). Thus, nonparametric Bayesian
models combine the benefits of parametric and
nonparametric models: a small variance (by using
Bayesian priors) and a small bias (by adapting
their structure nonparametrically). See Figure 9.1(c)
for an example of nonparametric Bayesian density
estimation.

Nonparametric Bayesian models can be classified
according to the type of hidden structure they
posit. For the previously discussed category learning
example, the hidden structure is a probability dis-
tribution over the space of observations. Thus, the
prior is a probability distribution over probability
distributions. A common choice for this prior is the
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Dirichlet process (Ferguson, 1973), which induces
a set of discrete clusters, where each observation
belongs to a single cluster and each cluster is
assigned to a randomly drawn value. Combining
the Dirichlet process with a model of how observed
features are generated by clusters, we obtain a
Dirichlet-process mixture model (Antoniak, 1974).
As we discuss in the following section, elaborations
of the Dirichlet process mixture model have been
applied to many psychological domains as varied
as category learning (Anderson, 1991; Sanborn,
Canini, & Navarro, 2008b), word segmentation
(Griffiths, & Johnson, 2009), and associative
learning (Gershman, Blei, & Niv, 2010; Gershman,
and Niv, 2012).

Although many of the applications of non-
parametric Bayesian models in cognitive science
have focused on the Dirichlet process mixture
model, other nonparametric Bayesian models, such
as the Beta process (Hjort, 1990; Thibaux and
Jordan, 2007) and Gaussian process (Rasmussen and
Williams, 2006), are more appropriate when people
infer probability distributions over observations
that are encoded using multiple discrete units or
continuous units. For example, feature learning is
best described by a hidden structure with multiple
discrete units. The Beta process (Griffiths and
Ghahramani, 2005, 2011; Hjort, 1990; Thibaux
and Jordan, 2007) is one appropriate nonparametric
Bayesian model for this example, and as we discuss
in the section Inferring Features: What Is a Per-
ceptual Unit?, elaborations of the Beta process have
been applied to model feature learning (Austerweil
and Griffiths, 2011, 2013), multimodal learning
(Yildirm and Jacobs, 2012), and choice preferences
(Görür, Jäkel; Miller, Griffiths). Finally, Gaussian
processes are appropriate when each observation is
encoded using one or more continuous units; we
discuss their application to function learning in the
section Learning Functions: How Are Continuous
Quantities Related? (Griffiths, Lucas, Williams, &
Kalish, 2009).

Inferring Clusters: How Are Observations
Organized into Groups?

One of the basic inductive problems faced
by people is organizing observations into groups,
sometimes referred to as clustering. This problem
arises in many domains, including category learning
(Clapper and Bower, 1994; Kaplan and Murphy,
1999; Pothos and Chater, 2002), motion percep-
tion (Braddick, 1993), causal inference (Kemp,
Tenenbaum, Niyogi, & Griffiths, 2010), word

segmentation (Werker and Yeung, 2005), semantic
representation (Griffiths, Steyvers, & Tenenbaum,
2007), and associative learning (Gershman et al.,
2010). Clustering is challenging because in real
world situations the number of clusters is often
unknown. For example, a child learning language
does not know a priori how many words there are
in the language. How should a learner discover new
clusters?

In this section, we show how clustering can
be formalized as Bayesian inference, focusing in
particular on how the nonparametric concepts
introduced in the previous section can be brought
to bear on the problem of discovering new clusters.
We then describe an application of the same ideas
to associative learning.

A Rational Model of Categorization
Categorization can be formalized as an inductive

problem: given the features of a stimulus (denoted
by x), infer the category label c. Using Bayes’s rule,
the posterior over category labels is given by:

P(c|x) = P(x|c)P(c)∑
c′ P(x|c′)P(c′)

= P(x, c)∑
c′ P(x, c′)

.

From this point of view, category learning is funda-
mentally a problem of density estimation (Ashby and
Alfonso-Reese, 1995) because people are estimating
a probability distribution over the possible obser-
vations from each category. Probabilistic models
differ in the assumptions they make about the joint
distribution P(x, c). Anderson (1991) proposed that
people model this joint distribution as a mixture
model:

P(x, c) =
∑

z

P(x, c|z)P(z),

where z ∈ {1, . . . ,K } denotes the cluster assigned to
x (z is the traditional notation for a cluster, and
is analogous to the hypothesis h in the previous
section). From a generative perspective, observa-
tions are generated by a mixture model from the
environment according to the following process: to
sample observation n, first sample its cluster zn from
P(z), and then the observation xn and its category cn
from the joint distribution specified by the cluster,
P(x, c|zn). Each distribution specified by a cluster
might be simple (e.g., a Gaussian), but their mixture
can approximate arbitrarily complicated distribu-
tions. Because each observation only belongs to one
cluster, the assignments zn = {z1, . . . ,zn} encode a
partition of the items into K distinct clusters, where
a partition is a grouping of items into mutually

192 h i g h e r l e v e l c o g n i t i o n



exclusive clusters. When the value of K is specified,
this generative process defines a simple probabilistic
model of categorization, but what should be the
value of K ?

To address the question of how to select the
value of K , Anderson assumed that K is not
known a priori, but rather learned from experi-
ence, such that K can be increased as new data
are observed. As the number of clusters grows
with observations and each cluster has associated
parameters defining its probability distribution over
observations, this rational model of categorization
is nonparametric. Anderson proposed a prior on
partitions that sequentially assign observations to
clusters according to:

P(zn = k|zn−1) =
{ mk

n−1+α if mk > 0 (i.e., k is old)
α

n−1+α if mk = 0 (i.e., k is new)

where mk is the number of items in zn−1 assigned
to cluster k, n is the total number of items observed
so far, and α ≥ 0 is a parameter that governs
the total number of clusters.3 As pointed out by
Neal (2000), the process proposed by Anderson is
equivalent to a distribution on partitions known
as the Chinese restaurant process (CRP; Aldous,
1985; Blackwell and MacQueen, 1973). Its name
comes from the following metaphor (illustrated in
Figure 9.2): Imagine a Chinese restaurant with an
unbounded number of tables (clusters), where each
table can seat an unbounded number of customers
(observations). The first customer enters and sits
at the first table. Subsequent customers sit at an
occupied table with a probability proportional to
how many people are already sitting there (mk),
and at a new table with probability proportional
to α. Once all the customers are seated, the
assignment of customers to tables defines a partition
of observations into clusters.

The CRP arises in a natural way from a
nonparametric mixture modeling framework (see
Gershman and Blei, 2012, for more details). To
see this, consider a finite mixture model where the

cluster assignments are drawn from:

θ ∼ Dirichlet(α/K , . . . ,α/K )

zi ∼ Multinomial(θ ), for i = 1, . . . ,n,

where Dirichlet( · ) denotes the K -dimensional
Dirichlet distribution, where θ roughly corresponds
to the relative weight of each block in the partition.
As the number of clusters increases to infinity (K →
∞), this distribution on zn is equivalent to the CRP.
Another view of this model is given by a seemingly
unrelated process, the Dirichlet process (Ferguson,
1973), which is a probability distribution over dis-
crete probability distributions. It directly generates
the partition and the parameters associated with
each block in the partition. Marginalizing over all
the possible ways of getting the same partition from
a Dirichlet process defines a related distribution, the
Pólya urn (Blackwell and MacQueen, 1973), which
is equivalent to the CRP when the parameter asso-
ciated with each block is ignored. For this reason,
a mixture model with a CRP prior on partitions
is known as a Dirichlet process mixture model
(Antoniak, 1974).

One of the original motivations for developing
the rational model of categorization was to reconcile
two important observations about human category
learning. First, in some cases, the confidence with
which people assign a new stimulus to a category
is inversely proportional to its distance from the
average of the previous stimuli in that category
(Reed, 1972). This, in conjunction with other data
on central tendency effects (e.g., Posner and Keele,
1968), has been interpreted as people abstracting
a “prototype” from the observed stimuli. On the
other hand, in some cases, people are sensitive
to specific stimuli (Medin and Schaffer, 1978),
a finding that has inspired exemplar models that
memorize the entire stimulus set (e.g., Nosofsky,
1986). Anderson (1991) pointed out that his
rational model of categorization can capture both of
these findings, depending on the inferred partition
structure: when all items are assigned to the same
cluster, the model is equivalent to forming a single

1

2

3

. . . Table 
1 

Table 
2 

Table 
3

Chinese Restaurant Process 
Tables 

Cu
sto

m
er

s
 

1  
  

  

2  
  

  

3 
  

  

(a) (b)

Fig. 9.2 (a) The culinary representation of the Chinese restaurant process and (b) the cluster assignments implied by it.
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prototype, whereas when all items are assigned
to unique clusters, the model is equivalent to an
exemplar model. However, in most circumstances,
the rational model of categorization will partition
the items in a manner somewhere between these
two extremes. This is a desirable property that other
recent models of categorization have adopted (Love,
Medin, & Gureckis, 2004). Finally the CRP serves
as a useful component in many other cognitive
models (see Figure 7 and Box 2).

Associative Learning
As its name suggests, associative learning has

traditionally been viewed as the process by which
associations are learned between two or more
stimuli. The paradigmatic example is Pavlovian
conditioning, in which a cue and an outcome (e.g.,
a tone and a shock) are paired together repeatedly.
When done with rats, this procedure leads to the
rat freezing in anticipation of the shock whenever it
hears the tone.

Association learning can be interpreted in terms
of a probabilistic causal model, which calculates the
probability that one variable, called the cue (e.g., a
tone), causes the other variable, called the outcome
(e.g., a shock). Here y encodes the presence or
absence of the outcome, and x similarly encodes the
presence or absence of the cue. The model assumes
that y is a noisy linear function of x: y∼N (wx,σ 2).
The parameter w encodes the associative strength
between x and y and σ 2 parameterizes the variability
of their relationship. This model can be generalized
to the case in which multiple cues are paired with
an outcome by assuming that the associations are
additive: y ∼ N (

∑
i wixi,σ 2), where i ranges over

the cues. The linear-Gaussian model also has an
interesting connection to classical learning theories
such as the Rescorla-Wagner model (Rescorla and
Wagner, 1972), which can be interpreted as assum-
ing a Gaussian prior on w and carrying out Bayesian
inference on w (Dayan, Kakade, Montague 2000;
Kruschke, 2008).

Despite the successes of the Rescorla-Wagner
model and its probabilistic variants, they incorrectly
predict that there should only be learning when the
prediction error is nonzero (i.e., when y−

∑
i wixi ̸=

0), but people and animals can still learn in
some cases. For example, in sensory preconditioning
(Brogden, 1939), two cues (A and B) are presented
together without an outcome; when A is subse-
quently paired with an outcome, cue B acquires
associative strength despite never being paired with
the outcome. Because A and B presumably start

out with zero associative strength and there are no
prediction errors during the preconditioning phase,
the Rescorla-Wagner model predicts that there
should be no learning. The model fails to explain
how preconditioning enables B to subsequently ac-
quire associative strength from A-outcome training.

Box 2 Composing Richer
Nonparametric Models

Although this chapter has focused on several of
the most basic nonparametric Bayesian models
and their applications to basic psychological
processes, these components can also be com-
posed to build richer accounts of more sophis-
ticated forms of human learning and reasoning
(bottom half of Figure 7). These composites
greatly extend the scope of phenomena that
can be captured in probabilistic models of
cognition. In this box, we discuss a number of
these composite models.

In many domains, categories are not simply a
flat partition of entities into mutually exclusive
classes. Often they have a natural hierarchical
organization, as in a taxonomy that divides
life forms into animals and plants; animals
into mammals, birds, fish, and other forms;
mammals into canidae, felines, primates, ro-
dents, . . . ; canidae into dogs, wolves, foxes,
coyotes, . . . ; and dogs into many different
breeds. Category hierarchies can be learned via
nonparametric models based on nested versions
of the CRP, in which each category at one level
gives rise to a CRP of subcategories at the level
below (Griffiths et al., 2008b; Blei, Griffiths, &
Jordan, 2010).

Category learning and feature learning are
typically studied as distinct problems (as dis-
cussed in the sections Inferring Clusters: How
Are Observations Organized into Groups? and
Inferring Features: What Is a Perceptual Unit?),
but in many real-world situations people can
jointly discover how best to organize objects
into classes and which features best sup-
port these categories. Nonparametric models
that combine the CRP and IBP can capture
these joint inferences (Austerweil and Griffiths,
2013). The model of Salakhutdinov et al.
(2012) extends this idea to hierarchies, using
the nested CRP combined with a hierarchical
Dirichlet process topic model to jointly learn
hierarchically structured object categories and
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Box 2 continued
hierarchies of part-like object features that
support these categories.

The CrossCat model (Shafto et al., 2011)
allows us to move beyond another limitation
of typical models of categorization (parametric
or nonparametric): the assumption that there
is only a single best way to categorize a set
of entities. Many natural domains can be
represented in multiple ways: animals may
be thought of in terms of their taxonomic
groupings or their ecological niches, foods may
be thought of in terms of their nutritional
content or social role; products may be thought
of in terms of function or brand. CrossCat
discovers multiple systems of categories of
entities, each of which accounts for a distinct
subset of the entities’ observed attributes, by
nesting CRPs over entities inside CRPs over
attributes.

Traditional approaches to categorization
treat each entity individually, but richer seman-
tic structure can be found by learning categories
in terms of how groups of entites relate to
each other. The Infinite Relational Model (IRM;
Kemp et al. 2006, 2010) is a nonparametric
model that discovers categories of objects that
not only share similar attributes, but also
participate in similar relations. For instance, a
data set for consumer choice could be charac-
terized in terms of which consumers bought
which products, which features are present in
which products, which demographic properties
characterize which users, and so on. IRM
could then discover how to categorize products
and consumers (and perhaps also features and
demographic properties), and simultaneously
uncover regularities in how these categories
relate (for) example, that consumers in class X
tend to buy products in class Y).

Nonparametric models defined over graph
structures, such as the graph-based GP models
of Kemp and Tenenbaum (2008, 2009), can
capture how people reason about a wider
range of dependencies between the properties
of entities and the relations between entities,
allowing that objects in different domains can
be related in qualitatively different ways. For
instance, the properties of cities might be
best explained by their relative positions in a
two-dimensional map, the voting patterns of
politicians by their orientation along a one-

dimensional liberal-conservative axis, and the
properties of animals by their relation in a
taxonomic tree. We could also distinguish an-
imals’ anatomical and physiological properties,
which are best explained by the taxonomy,
from behavioral and ecological properties that
might be better explained by their relation in a
directed graph such as a food web. Perhaps most
intriguingly, nonparametric Bayesian models
can be combined with symbolic grammars to
account for how learners could explore the
broad landscape of different model structures
that might describe a given domain and arrive at
the best model (Kemp and Tenenbaum, 2008;
Grosse et al., 2012). A grammar is used to
generate a space of qualitatively different model
families, ranging from simple to complex, each
of which defines a predictive model for the
observed data based on a GP, CRP, IBP or other
nonparametric process. These frameworks have
been used to build more human-like machine
learning and discovery systems, but they remain
to be tested as psychological accounts of how
humans learn domain structures.

Sensory preconditioning and other related find-
ings have prompted consideration of alterna-
tive probabilistic models for associative learning.
Courville, Daw, & Touretzky, (2006) proposed that
people and animals posit latent causes to explain
their observations in Pavlovian conditioning exper-
iments. According to this idea, a single latent cause
generates both the cues and outcomes. Latent cause
models are powerful because they can explain why
learning occurs in the absence of prediction errors.
For example, during sensory preconditioning, the
latent cause captures the covariation between the
two cues; subsequent conditioning of A increases
the probability that B will also be accompanied by
the outcome.

An analogous question about how to pick the
number of clusters in a mixture model arises in
associative learning: How many latent causes should
there be in a model of associative learning? To
address this question, Gershman and colleagues
(Gershman et al., 2010; Gershman and Niv, 2012)
used the CRP as a prior on latent causes. This
allows the model to infer new latent causes when
the sensory statistics change, but otherwise it prefers
a small number of latent causes. Unlike previous
models that define the number of latent causes
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a priori, Gershman et al. (2010) showed that
this model could explain why extinction does not
tend to erase the original association: Extinction
training provides evidence that a new latent cause
is active. For example, when conditioning and
extinction occur in different contexts, the model
infers a different latent cause for each context; upon
returning to the conditioning context, the model
predicts a renewal of the conditioned response,
consistent with empirical findings (see Bouton,
2004). By addressing the question of how agents
infer the number of latent causes, the model offered
new insight into a perplexing phenomenon.

Inferring Features: What Is a
Perceptual Unit?

The types of latent structures that people use
to represent a set of stimuli can be far richer than
clustering the stimuli into groups. For example,
consider the following set of animals: domestic cats,
dogs, goldfish, sharks, lions, and wolves. Although
they can be represented as clusters (e.g., PETS
and WILD ANIMALS or FELINES, CANINES,
and SEA ANIMALS), another way to represent the
animals is using features, or multiple discrete units
per animal (e.g., a cat might be represented with the
following features: HAS TAIL, HAS WHISKERS,
HAS FUR, IS CUTE, etc.). Feature representa-
tions can be used to solve problems arising in
many domains, including choice behavior (Tversky,
1972), similarity (Nosofsky, 1986; Tversky, 1977),
and object recognition (Palmer, 1999; Selfridge and
Neisser, 1960). Analogous to clustering, the appro-
priate feature representation or even the number of
features for a domain is not known a priori. In fact,
a common criticism of feature-based similarity is
that there is an infinite number of potential features
that can be used to represent any stimulus and
that human judgments are mostly determined by
the features selected to be used in a given context
(Goldmeier, 1972; Goodman, 1972; Murphy and
Medin, 1985). How do people infer the appropriate
features to represent a stimulus in a given context?

In this section, we describe how the problem
of inferring feature representations can be cast
as a problem of Bayesian inference, where the
hypothesis space is the space of possible feature
representations. Because there is an infinite number
of feature representations, the model used to solve
this problem will be a nonparametric Bayesian
model. Then, we illustrate two psychological
applications.

A Rational Model of Feature Inference
Analogous to other Bayesian models of cogni-

tion, defining a rational model of feature inference
amounts to applying Bayes’s rule to a specification
of the hypothesis space, how hypotheses produce
observations (the likelihood), and the prior proba-
bility of each hypothesis (the prior). Following pre-
vious work by Austerweil and Griffiths (2011), we
first define these three components for a Bayesian
model with a finite feature repository and then
define a nonparametric Bayesian model by allowing
an infinite repository of features. This allows the
model to infer a feature representation without
presupposing the number of features ahead of time.

The computational problem of feature repre-
sentation inference is as follows: Given the D-
dimensional raw primitives for a set of N stimuli
X (each object is a D-dimensional row vector
xn), infer a feature representation that encodes the
stimuli and adheres to some prior expectations.
We decompose a feature representation into two
components: an N × K feature ownership matrix
Z, which is a binary matrix encoding which of
the K features each stimulus has (i.e., znk = 1 if
stimulus n has feature k, and znk = 0 otherwise),
and a K ×D feature image matrix Y, which encodes
the consequence of a stimulus having each feature.
In this case, the hypothesis space is the Cartesian
product of possible feature ownership matrices and
possible feature image matrices. As we discuss later
in further detail, the precise format of feature image
matrix Y depends on the format of the observed
raw primitives. For example, if the stimuli are the
images of objects and the primitives are D binary
pixels that encode whether light was detected in
each part of the retina, then a stimulus and a feature
image, x and y respectively, are both D-dimensional
binary vectors. So if x is the image of a mug, y could
be the image of its handle.

Applying Bayes’s rule and assuming that the fea-
ture ownership and image matrices are independent
a priori, inferring a feature representation amounts
to optimizing the product of three terms

P(Z,Y|X) ∝ P(X|Y,Z)P(Y)P(Z),

where P(X|Y,Z), the likelihood, encodes how
well each object xn is reconstructed by combining
together the feature images Y of the features the
object has, which is given by zn, P(Y) encodes prior
expectations about feature images (e.g., Gestalt
laws), and P(Z) encodes prior expectations about
feature ownership matrices.4 As the likelihood and
feature image prior are more straightforward to
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define and specific to the format of the observed
primitives, we first derive a sensible prior distri-
bution over all possible feature ownership matrices
before returning our attention to them.

Before delving into the case of an infinite
number of potential features, we derive a prior
distribution on feature ownership matrices that has
a finite and known number of features K . As the
elements of a feature ownership matrix are binary,
we can define a probability distribution over the
matrix by flipping a weighted coin with bias πk
for each element znk. We do not observe πk and
so, we assume a Beta distribution as its prior. This
corresponds to the following generative process

πk
iid∼ Beta(α/K ,1), for k = 1, . . . ,K

znk|πk
iid∼ Bernoulli(πk), for n = 1, . . . ,N .

Due to the conjugacy of Bernoulli likelihoods and
Beta priors, it is relatively simple to integrate out
π1, . . . ,πK to arrive at the following probability
distribution, P(Z|α), over finite feature ownership
representations. See Bernardo and Smith (1994)
and Griffiths and Ghahramani (2011) for details.

Analogous to the method discussed earlier for
constructing the CRP as the infinite limit of a finite
model, taking the limit of P(Z|α) as K → ∞
yields a valid probability distribution over feature
ownership matrices with an infinite number of
potential features.5 Note that as K → ∞, the
prior on feature weights gets concentrated at zero
(because α/K → 0). This results in an infinite
number of columns that simply contain zeroes, and
thus, these features will have no consequence for
the set of stimuli we observed (as they are not
assigned to any stimuli). Because both the number
of columns K → ∞ and the probability of an
object taking a feature (probability that znk = 1)
πk → 0 at corresponding rates, there is a finite,
but random, number of columns have at least one
nonzero element (the features that have been taken
by at least one stimulus). This limiting distribution
is called the Indian buffet process (IBP; Griffiths and
Ghahramani 2005, 2011), and it is given by the
following equation

P(Z |α) = αK+
∏2n−1

h=1 Kh
exp

{
−α

N∑

n=1

n−1

}

×
K+∏

k=1

(N −mk)(mk −1)
N

,

where K+ is the number of columns with at least
one nonzero entry (the number of features taken by

at least one object), and Kh is the number of features
with history h, where a history can be thought
of as the column of the feature interpreted as a
binary number. The term containing the history
penalizes features that have equivalent patterns of
ownership and it is a method for indexing features
with equivalent ownership patterns.

Analogous to the CRP, the probability distri-
bution given by this limiting process is equivalent
to the probability distribution on binary matrices
implied by a simple sequential culinary metaphor.
In this culinary metaphor, “customers,” correspond-
ing to the stimuli or rows of the matrix, enter an
Indian buffet and take dishes, corresponding to
the features or columns of the matrix, according
to a series of probabilistic decisions based on how
the previous customers took dishes. When the first
customer enters the restaurant, she takes a number
of new dishes sampled from a Poisson distribution
with parameter α. As customers sequentially enter
the restaurant, each customer n takes a previously
sampled dish k with probability mk/n and then
samples a number of new dishes sampled from a
Poisson distribution with parameter α/n.

Figure 9.3(a) illustrates an example of a potential
state of the IBP after three customers have entered
the restaurant. The first customer entered the
restaurant and sampled two new dishes from the
Poisson probability distribution with parameter α.
Next, the second customer entered the restaurant
and took each of the old dishes with probability 1/2
and sampled one new dish from the Poisson proba-
bility distribution with parameter α/2. Then, the
third customer entered the restaurant and took
the first dish with probability 2/3, did not take
the second dish with probability 1/3, and did
not take the third dish with probability 2/3.
The equivalent feature ownership matrix repre-
sented by this culinary metaphor is shown in
Figure 9.3(b).

As previously encountered features are sampled
with probability proportional to the number of
times they were previously taken and the proba-
bility of new features decays as more customers
enter the restaurant (it is Poisson distributed with
parameter given by α/N where N is the number of
customers), the IBP favors feature representations
that are sparse and have a small number of features.
Thus, it encodes a natural prior expectation toward
feature representations with a few features, and can
be interpreted as a simplicity bias.

Now that we have derived the feature ownership
prior P(Z), we turn to defining the feature image
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Fig. 9.3 (a) The culinary representation of the Indian buffet process and (b) the feature ownership matrix implied by it.

prior P(Y) and the likelihood P(X|Y,Z), which will
finish a specification of the nonparametric Bayesian
model. Remember that the feature image matrix
contains the consequences of a stimulus having a
feature in terms of the raw primitives. Thus, in
the nonparametric case, the feature image matrix
can be thought of containing the D-dimensional
consequence of each of the K+ used features. The
infinite unused features can be ignored because
a feature only affects the representation of a
stimulus if it is used by that stimulus. In most
applications to date, the feature image prior is
mostly “knowledge-less.” For example, the standard
prior used for stimuli that are binary images is an
independent Bernoulli prior, where each pixel is
on with probability φ independent of the other
pixels in the image. One exception is one of the
simulations by Austerweil and Griffiths (2011),
who demonstrated that using a simple proximity
bias (an Ising model that favors adjacent pixels to
share values, Geman and Geman, 1984) as the
feature image prior results in more psychologically
plausible features: The feature images without using
the proximity bias were not contiguous and were
speckled, whereas the feature images using the
proximity bias were contiguous. For grayscale and
color images (Austerweil and Griffiths, 2011; Hu,
Zhai, Williamson, & Boyd-Graber, 2012), the
standard “knowledge-less” prior generates each pixel
from a Gaussian distribution independent of the
other pixels in the image.

Analogous to the feature image priors, the choice
of the likelihood depends on the format of the raw
dimensional primitives. In typical applications, the
likelihood assumes that the reconstructed stimuli
is given by the product of the feature ownership
and image matrices, ZY and penalizes the de-
viation between the reconstructed and observed
stimuli (Austerweil and Griffiths, 2011). For binary
images, the noisy-OR likelihood (Pearl, 1988;
Wood, Griffiths, & Ghahramani, 2006) is used,
which amounts to thinking of each feature as a
“hidden cause” and has support as a psychological

explanation for how people reason about observed
effects being produced by multiple hidden causes
(Cheng, 1997; Griffiths and Ghahramani, 2005).
For grayscale images, the linear-Gaussian likelihood
is typically used (Griffiths and Ghahramani, 2005;
Austerweil and Griffiths, 2011), which is optimal
under the assumption that the reconstructed stimuli
is given by ZY and that the metric of success is
the sum squared error between the reconstructed
and observed stimuli. Recent work in machine
learning has started to explore more complex
likelihoods, such as explicitly accounting for depth
and occlusion (Hu, Zhai, Williamson, & Boyd-
Graber 2012). Formalizing more psychologically
valid feature image priors and likelihoods is a
mostly unexplored area of research that demands
attention.

After specifying the feature ownership and
image prior and the likelihood, a feature rep-
resentation can be inferred for a given set of
observations using standard machine learning infer-
ence techniques, such as Gibbs sampling (Geman
and Geman, 1984) or particle filtering (Gordon,
Salmond, & Smith, 1993). We refer the reader
to Austerweil and Griffiths (2013), who discuss
Gibbs sampling and particle filtering for feature
inference models and analyze their psychological
plausibility.

What features should people use to represent the
image in Figure 9.4(a)? When the image is in the
context of the images in Figure 9.4(b), Austerweil
and Griffiths (2011) found that people and the IBP
model infer a single feature to represent it, namely
the object itself, which is shown in Figure 9.4(d).
Alternatively, when the image is in the context of
the images in Figure 9.4(c), people and the IBP
model infer a set of features to represent it, which
are three of the six parts used to create the images,
which are shown in Figure 9.4(e).6 Importantly,
Austerweil and Griffiths (2011) demonstrated that
two of the most popular machine-learning tech-
niques for inferring features from a set of im-
ages, principal component analysis (Hyvarinen,
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Fig. 9.4 Effects of context on the features inferred by people to represent an image (from Experiment 1 of Austerweil & Griffiths, 2011).
What features should be used to represent the image shown in (a)? When (a) is in the context of the images shown in (b), participants
and the nonparametric Bayesian model represent it with a single feature, the image itself, which is shown in (d). Conversely, when
(a) is in the context of the images shown in (c), it is represented as a conjunction of three features, shown in (e). Participants and the
nonparametric Bayesian model generalized differently due to using different representations.

Karhunen, & Oja 2001) and independent com-
ponent analysis (Hyvarinen et al., 2001), did not
explain their experimental results. This suggests that
the simplicity bias given by the IBP is similar to
the prior expectations people use to infer feature
representations, although future work is necessary
to more precisely test and formally characterize the
biases people use to infer feature representations.
Furthermore, this contextual effect was replicated in
grayscale 3-D rendered images and in a conceptual
domain, suggesting that it may be a domain-general
capability.

Unlike the IBP and most other computational
models of feature learning, people tend to use fea-
tures that are invariant over transformations (e.g.,
translations or dilations) because properties of fea-
tures observed from the environment do not occur
identically across appearances (e.g., the retinal im-
age after eye or head movements). By modifying the
culinary metaphor such that each time a customer
takes a dish she draws a random spice from a spice
rack, the transformed IBP (Austerweil and Griffiths,
2010b) can infer features invariant over a set of
transformations. Austerweil and Griffiths (2013)
explain a number of previous experimental results
and outline novel contextual effects predicted by
the extended model that they subsequently confirm
through behavioral experiments. Other extensions
to this same framework have been used to explain
multimodal representation learning (Yildirm and
Jacobs, 2012), and in one extension, the IBP and
CRP are used together to infer features diagnostic
for categorization (Austerweil and Griffiths, 2013).

Choice Behavior
According to feature-based choice models, peo-

ple choose between different options depending on
their preference for the features (called an aspect)
that each option has. One influential feature-based
choice model is the elimination by aspects model
(Tversky, 1972). Under this model, the preference
of a feature is assumed to be independent of other
features and defined by a single, positive number,
called a weight. Choices are made by repeatedly
selecting a random feature weighted by their prefer-
ence and removing all options that do not contain
the feature until there is only one option remaining.
For example, when a person is choosing which
television to purchase, she is confronted with a large
array of possibilities that vary on many features,
such as IS LCD, IS PLASMA, IS ENERGY
EFFICIENT, IS HIGH DEFINITION, and so on,
each with their own associated weight. Because the
same person may make different choices even when
they are confronted with the same set of options,
the probability of choosing option i over option j,
pij , is proportional to the weights of the features that
option i has, but option j does not have, relative to
the features that option j has, but option i does not
have. Formally, this is given by

pij =
∑

k wkzik(1− zjk)
∑

k wkzik(1− zjk)+
∑

k wk(1− zik)zjk
,

where zik = 1 denotes that option i has feature k
and wk is the preference weight given to feature k.
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Although modeling human choice behavior
using the elimination by aspects model is straight-
forward when the features of each option and
their preference weights are known; it is not
straightforward how to infer what features a person
uses to represent a set of options and their weights
given only the person’s choice behavior. To address
this issue, Görür et al. (2006) proposed the
IBP as a prior distribution over possible feature
representations and a Gamma distribution as a
prior over the feature weights, which is a flexible
distribution that only assigns probability to positive
numbers. They demonstrated that human choice
for which celebrities participants from the early
1970s one would prefer to chat with (Rumelhart
and Greeno, 1971) is just as well described by
the elimination by aspects model given a set
of features defined by a modeler or when the
features are inferred with the IBP as the prior over
possible feature representations. As participants are
familiar with the celebrities and the celebrities are
related to each other according to a hierarchy (i.e.,
politicians, actors, and athletes), Miller et al. (2008)
extended the IBP such that it infers features in
a manner that respects the given hierarchy (i.e.,
options are more likely to have the same features
to the degree that they are close to each other
in the hierarchy). They demonstrated that the
extended IBP explains human choice judgments
better and uses fewer features to represent the
options. Although the IBP-based extensions helps
the elimination by aspects model overcome some
of its issues, the extended models are unable to
account for the full complexity of human choice
behavior (e.g., attraction effects; Huber, Payne,
& Puto, 1982). Regardless, exploring choice
models that include a feature-inference process is
a promising direction for future research, because
such models can potentially be incorporated with
more psychologically valid choice models (e.g.,
sequential sampling models of preferential choice;
Roe, Busemeyer, & Townsend 2001).

Learning Functions: How Are Continuous
Quantities Related?

So far, we have focused on cases in which the
latent structure to be inferred is discrete—either
a category or a set of features. However, latent
structures can also be continuous. One of the most
prominent examples is function learning, in which
a relationship is learned between two (or more)
continuous variables. This is a problem that people
often solve without even thinking about it, as when

learning how hard to press the pedal to yield a
certain amount of acceleration when driving a rental
car. Nonparametric Bayesian methods also provide
a solution to this problem that can learn complex
functions in a manner that favors simple solutions.

Viewed abstractly, the computational problem
behind function learning is to learn a function
y = f (x) from a set of real-valued observations
xN = (x1, . . . ,xN ) and tN = (t1, . . . , tN ), where tn is
assumed to be the true value obscured by some kind
of additive noise (i.e., tn = yn +ϵn, where ϵn is some
type of noise). In machine learning and statistics,
this is referred to as a regression problem. In this
section, we discuss how this problem can be solved
using Bayesian statistics, and how the result of
this approach is related to a class of nonparametric
Bayesian models known as Gaussian processes. Our
presentation follows that in Williams (1998).

Bayesian linear regression
Ideally, we would seek to solve our regression

problem by combining some prior beliefs about
the probability of encountering different kinds
of functions in the world with the information
provided by x and y. We can do this by applying
Bayes’s rule, with

p(f |xN , tN ) = p(tN |f ,xN )p(f )∫
F p(tN |f ,xN )p(f )df

, (1)

where p(f ) is the prior distribution over functions
in the hypothesis space F , p(tN |f ,xN ) is the
likelihood of observing the values of tN if f were
the true function, and p(f |xN , tN ) is the posterior
distribution over functions given the observations
xN and yN . In many cases, the likelihood is defined
by assuming that the values of tn are independent
given f and xn, and each follows a Gaussian
distribution with mean yn = f (xn) and variance σ 2.
Predictions about the value of the function f for a
new input xN+1 can be made by integrating over
this posterior distribution.

Performing the calculations outlined in the
previous paragraph for a general hypothesis space
F is challenging, but it becomes straightforward
if we limit the hypothesis space to certain specific
classes of functions. If we take F to be all
linear functions of the form y = b0 + xb1, then
we need to define a prior p(f ) over all linear
functions. As these functions can be expressed in
terms of the parameters b0 and b1, it is sufficient
to define a prior over the vector b = (b0,b1),
which we can do by assuming that b follows
a multivariate Gaussian distribution with mean
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zero and covariance matrix !b. Applying Eq. 1,
then, results in a multivariate Gaussian posterior
distribution on b (see Rasmussen and Williams,
2006, for details) with

E[b|xN , tN ] =
(
σ 2

t !−1
b +XT

N XN

)−1
XT

N tN

cov[b|xN ,yN ] =
(

!−1
b + 1

σ 2
t

XT
N XN

)−1

where XN = [1N xN ] (i.e., a matrix with a vector
of ones horizontally concatenated with xN+1).
Because yN+1 is simply a linear function of b,
the predictive distribution is Gaussian, with yN+1
having mean [1 xN+1]E[b|xN , tN ] and variance
[1 xN+1]cov[b|xN , tN ][1 xN+1]T . The predictive
distribution for tN+1 is similar but with the
addition of σ 2 to the variance.

Basis Functions and Similarity Kernels
Although considering only linear functions

might seem overly restrictive, linear regression
actually gives us the basic tools we need to solve
this problem for more general classes of functions.
Many classes of functions can be described as linear
combinations of a small set of basis functions. For
example, all kth degree polynomials are linear com-
binations of functions of the form 1 (the constant
function), x, x2,. . . , xk. Letting φ(1), . . . ,φ(k) denote
a set of basis functions, we can define a prior on
the class of functions that are linear combinations
of this basis by expressing such functions in the
form f (x) = b0 + φ(1)(x)b1 + ·· · + φ(k)(x)bk and
defining a prior on the vector of weights b. If
we take the prior to be Gaussian, we reach the
same solution as outlined in the previous paragraph,
substituting " = [1N φ(1)(xN ) . . .φ(k)(xN )] for
X and [1 φ(1)(xN+1) . . .φ(k)(xN+1) for [1 xN+1],
where φ(xN ) = [φ(x1) . . .φ(xN )]T .

If our goal were merely to predict yN+1 from
xN+1, yN , and xN , we might consider a different
approach, by simply defining a joint distribution
on yN+1 given xN+1 and conditioning on yN .
For example, we might take yN+1 to be jointly
Gaussian, with covariance matrix

KN+1 =
(

KN kN ,N+1
kT

N ,N+1 kN+1

)

where KN depends on the values of xN , kN ,N+1
depends on xN and xN+1, and kN+1 depends only
on xN+1. If we condition on yN , the distribution
of yN+1 is Gaussian with mean kT

N ,N+1K−1
N y

and variance kN+1 − kT
N ,N+1K−1

N kN ,N+1. This

approach to prediction is often referred to as using
a Gaussian process, since it assumes a stochastic
process that induces a Gaussian distribution on
y based on the values of x. This approach can
also be extended to allow us to predict yN+1 from
xN+1, tN , and xN by adding σ 2

t IN to KN , where
IN is the n × n identity matrix, to take into
account the additional variance associated with the
observations tN .

The covariance matrix KN+1 is specified using
a function whose argument is a pair of stimuli
known as a kernel, with Kij = K (xi,xj). Any
kernel that results in an appropriate (symmetric,
positive-definite) covariance matrix for all x can
be used. One common kernel is the radial basis
function, with

K (xi,xj) = θ2
1 exp

(
− 1

θ2
2

(xi − xj)2
)

indicating that values of y for which values of x
are close are likely to be highly correlated. See
Schölkopf and Smola (2002) for further details
regarding kernels. Gaussian processes thus provide
an extremely flexible approach to regression, with
the kernel being used to define which values of x
are likely to have similar values of y. Some examples
are shown in Figure 9.5.

Just as we can express a covariance matrix in
terms of its eigenvectors and eigenvalues, we can
express a given kernel K (xi,xj) in terms of its
eigenfunctions φ and eigenvalues λ, with

K (xi,xj) =
∞∑

k=1

λkφ
(k)(xi)φ(k)(xj)

for any xi and xj . Using the results from the previous
paragraph, any kernel can be viewed as the result of
performing Bayesian linear regression with a set of
basis functions corresponding to its eigenfunctions,
and a prior with covariance matrix !b = diag(λ).

These equivalence results establish an important
duality between Bayesian linear regression and
Gaussian processes: For every prior on functions,
there exists a kernel that defines the similarity
between values of x, and for every kernel, there
exists a corresponding prior on functions that yields
the same predictions. This result is a consequence of
Mercer’s theorem (Mercer, 1909). Thus, Bayesian
linear regression and prediction with Gaussian
processes are just two views of the same class of
solutions to regression problems.
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Fig. 9.5 Modeling functions with Gaussian processes. The data points (crosses) are the same in both panels. (A) Inferred posterior
using a radial basis covariance function (Eq. 2) with θ2 = 1/4. (B) Same as panel A, but with θ1 = 1 and θ2 = 1/8. Notice that as
θ2 gets smaller, the posterior mean more closely fits the observed data points, and the posterior variance is larger in regions far from
the data.

Modeling Human Function Learning
The duality between Bayesian linear regression

and Gaussian processes provides a novel perspective
on human function learning. Previously, theories
of function learning had focused on the roles of
different psychological mechanisms. One class of
theories (e.g., Carroll, 1963; Brehmer, 1974; Koh
and Meyer, 1991) suggests that people are learning
an explicit function from a given class, such
as the polynomials of degree D. This approach
attributes rich representations to human learners,
but has traditionally given limited treatment to
the question of how such representations could
be acquired. A second approach (e.g., DeLosh,
Busemeyer, & McDaniel, 1997) emphasizes the
possibility that people could simply be forming
associations between similar values of variables.
This approach has a clear account of the underlying
learning mechanisms, but it faces challenges in
explaining how people generalize beyond their
experience. More recently, hybrids of these two
approaches have been proposed (e.g., Kalish,
Lewandowsky, & Kruschke, 2004; McDaniel and
Busemeyer, 2005). For example, the population
of linear experts (POLE; Kalish et al. 2004) uses
associative learning to learn a set of linear functions

and their expertise over regions of dimensional
space.

Bayesian linear regression resembles explicit rule
learning, estimating the parameters of a function,
whereas the idea of making predictions based on
the similarity between predictors (as defined by a
kernel) that underlies Gaussian processes is more
in line with associative accounts. The fact that,
at the computational level, these two ways of
viewing regression are equivalent suggests that these
competing mechanistic accounts may not be as far
apart as they once seemed. Just as viewing category
learning as density estimation helps to understand
that prototype and exemplar models correspond to
different types of solutions of the same statistical
problem, viewing function learning as regression
reveals the shared assumptions behind rule learning
and associative learning.

Gaussian process models also provide a good
account of human performance in function learning
tasks. Griffiths et al. (2009) compared a Gaussian
process model with a mixture of kernels (linear,
quadratic, and radial basis) to human performance.
Figure 9.6 shows mean human predictions when
trained on a linear, exponential, and quadratic
function (from DeLosh et al., 1997), together with
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Fig. 9.6 Extrapolation performance in function learning. Mean predictions on linear, exponential, and quadratic functions for (a)
human participants (from DeLosh et al. 1997) and (b) a Gaussian process model with linear, quadratic, and nonlinear kernels. Training
data were presented in the region between the vertical lines, and extrapolation performance was evaluated outside this region. Figure
reproduced from Griffiths et al. (2009).

the predictions of the Gaussian process model.
The regions to the left and right of the vertical
lines represent extrapolation regions, being input
values for which neither people nor the model were
trained. Both people and the model extrapolate near
optimally on the linear function, and reasonably ac-
curate extrapolation also occurs for the exponential
and quadratic function. However, there is a bias
toward a linear slope in the extrapolation of the
exponential and quadratic functions, with extreme
values of the quadratic and exponential function
being overestimated.

Conclusions
Probabilistic models form a promising frame-

work for explaining the impressive success that
people have in solving different inductive problems.
As part of performing these feats, the mind
constructs structured representations that flexibly
adapt to the current set of stimuli and context.
In this chapter, we reviewed how these problems
can be described from a statistical viewpoint. To
define models that infer representations that are
both flexible and structured, we described three
main classes of nonparametric Bayesian models and
how the format of the observed stimuli determines

which of the three classes of models should be
used.

Our presentation of these three classes of models
is only the beginning of an ever-growing literature
using nonparametric Bayesian processes in cognitive
science. Each class of model can be thought of as
providing primitive units, which can be composed
in various ways to form richer models. For example,
the IBP can be interpreted as providing primitive
units that can be composed together using logical
operators to define a categorization model, which
learns its own features along with a propositional
rule to define a category. Figure 9.7 presents some
of these applications and Box 2 provides a detailed
discussion of them.

Concluding remarks
1. Although it is possible to define probabilistic

models that can infer any desired structure, due to
the bias-variance trade-off, prior expectations over
a rich class of structures are needed to capture the
structures inferred by people when given a limited
number of observations.

2. Nonparametric Bayesian models are
probabilistic models over arbitrarily complex
structures that are biased toward simpler structures.
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Representational primitive Key Psychological Application Nonparametric Bayesian Process Key References

Partitions Category assignment Chinese restaurant process (CRP) Aldous (1985)
Probability distributions over
competing discrete units

Category learning/Density esti-
mation

Dirichlet process (DP) Ferguson (1973)

Probability distributions over in-
dependent discrete units

Feature assignment
Indian buffet process (IBP)/Beta pro-
cess (BP)1

Griffiths and Ghahramani (2005);
Thibaux and Jordan (2007)

Distributions over continuous
units

Function learning Gaussian process (GP) Rasmussen and Williams (2006)

Hierarchical category learning Nested CRP
Griffiths et al. (2008b); Blei et al.
(2010)

Jointly learning categories and
features

CRP + IBP, nested CRP + hierarchical
DP topic model

Austerweil and Griffiths (2013);
Salakhutdinov et al. (2012)

Composites Cross-cutting category learning CRP over entities embedded inside
CRP over attributes

Shafto et al. (2011)

Relational category learning Product of CRPs over multiple entity
types

Kemp et al. (2006, 2010)

Property induction GP over latent graph structure Kemp and Tenenbaum (2009)

Domain structure learning GP/CRP/IBP + grammar over model
forms

Kemp and Tenenbaum (2008);
Grosse et al. (2012)

Fig. 9.7 Different assumptions about the type of structure generating the observations from the environment results in different types
of nonparametric Bayesian models. The most basic nonparametric models define distributions over core representational primitives,
while more advanced models can be constructed by composing these primitives with each other and with other probabilistic modeling
and knowledge representation elements (see Box 2). Typically, researchers in cognitive science do not distinguish between the CRP
and DP, or the IBP and BP. However, they are all distinct mathematical objects, where the CRP and IBP are distributions over the
assignment of stimuli to units and the DP and BP are distributions over the assigment of stimuli to units and the parameters associated
with those units. The probability distribution given by only considering the number of stimuli assigned to each unit by a DP and BP
yields a distribution over assignments equivalent to the CRP and IBP, respectively.

Thus, they form a middle ground between the two
extremes of models that infer overly simple
structures (parametric models) and models that
infer overly complex structures (nonparametric
models).

3. Using different nonparametric models result
in different assumptions about the format of the
hidden structure. When each stimulus is assigned
to a single latent unit, multiple latent units, or
continuous units, the Dirichlet process, Beta
process, and Gaussian process are appropriate,
respectively. These processes are compositional in
that they can be combined with each other and
other models to infer complex latent structures,
such as relations and
hierarchies.

Some Future Questions
1. How similar are the inductive biases defined

by nonparametric Bayesian models to those people
use when inferring structured representations?

2. What are the limits on the complexity of
representations that people can learn? Are
nonparametric Bayesian models too powerful?

3. How do nonparametric Bayesian models
compare to other computational frameworks that
adapt their structure with experience, such as
neural networks?

Notes
1. Note that we define parametric, nonparametric, and other

statistical terms from the Bayesian perspective. We refer the
reader interested in the definition of these terms from the
frequentist perspective and a comparison of frequentist and
Bayesian perspectives to
Young and Smith (2010).

2. Our definition of “density estimation” includes estimating
any probability distribution over a discrete or continuous space,
which is slightly broader than its standard use in statistics,
estimating any probability distribution over a continuous space.

3. Our formulation departs from Anderson’s by adopting the
notation typically used in the statistics literature. However, the
two formulations are equivalent.

4. We have written the posterior probability as proportional
to the product of three terms because the normalizing constant
(the denominator) for this example is intractable to compute
when there is an infinite repository of features.

5. Technically, to ensure that the infinite limit of P(Z|α) is
valid requires defining all feature ownership matrices that differ
only in the order of the columns to be equivalent. This is due to
identifiability issues and is analogous to the arbitrariness of the
cluster (or table) labels in the CRP.

6. Austerweil and Griffiths (2011) tested whether people
represent the objects with the parts as features by seeing if they
were willing to generalize a property of the set of objects (being
found in a cave on Mars) to a novel combination of three of the
six parts used to create the images. See Austerweil and Griffiths
(2011) and Austerweil and Griffiths (2013) for a discussion of
this methodology and the theoretical implications of these
results.

7. Although we collapsed the distinction between IBP and
BP, they are distinct nonparametric Bayesian processes. See the
caption of Figure 2 and the glossary for more
details.
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Glossary
Beta process: a stochastic process that assigns a real number
between 0 and 1 to a countable set of units, which makes
it a natural prior for latent feature models (interpreting the
number as a probability)

bias: the error between the true structure and the
average structure inferred based on observations from the
environment

bias-variance trade-off: to reduce the error in generalizing
a structure to new observations, an agent has to reduce both
its bias and variance

Chinese restaurant process: a culinary metaphor that
defines a probability distribution over partitions, which
yields an equivalent distribution on partitions as the one
implied by a Dirichlet process when only the number of
stimuli assigned to each block is considered

computational level: interpreting the behavior of a system
as the solution to an abstract computational problem posed
by the environment

consistency: given enough observations, the statistical
model infers the true structure producing the observations

Dirichlet process: a stochastic process that assigns a set of
non-negative real numbers that sum to 1 to a countable
set of units, which makes it a natural prior for latent class
models (interpreting the assigned number as the probability
of that unit)

exchangeability: a sequence of random variables is ex-
changeable if and only if their joint probability is invariant
to reordering (does not change)

Gaussian process: a stochastic process that defines a joint
distribution on a set of variables that is Gaussian, which
makes it a natural prior for function learning models

importance sampling: approximating a distribution by
sampling from a surrogate distribution and then reweight-
ing the samples to compensate for the fact that they came
from the surrogate rather than the desired distribution

Indian buffet process: a culinary metaphor for describing
the probability distribution over the possible assignments
of observations to multiple discrete units, which yields an
equivalent distribution on discrete units as the one implied
by a Beta process when only the number of stimuli assigned
to each unit is considered

inductive inference: a method for solving a problem that
has more than one logically possible solution

likelihood: the probability of some observed data given a
particular structure or hypothesis is true

Markov chain Monte Carlo: approximating a distribution
by setting up a Markov chain whose limiting distribution is
that distribution

Monte Carlo: using random number sampling to solve
numerical problems

nonparametric: a model whose possible densities belongs
to a family that includes arbitrary distributions

parametric: a model that assumes possible densities belongs
to a family that is parameterized by a fixed number of
variables

particle filtering: a sequentially adapting importance
sampler where the surrogate distribution is based on the
approximated posterior at the previous time step

partition: division of a set into nonoverlapping subsets

posterior probability: an agent’s belief in a structure or
hypothesis after some observations

prior probability: an agent’s belief in a structure or
hypothesis before any observations

rational analysis: interpreting the behavior of a system as
the ideal solution to an abstract computational problem
posed by the environment usually with respect to some
assumptions about the system’s environment

rational process models: a process model that is a statistical
approximation to the ideal solution given by probability
theory

variance: the degree that the inferred structure changes
across different possible observations from the environment
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