

Project 13: Liquid state machines and interval timing

- 1) Build a simple liquid state machine, loosely following Maass et al. (2002): a recurrent neural network with leaky integrate-and-fire neurons and random weights, connected to a linear readout. Train the readout weights with ordinary least squares to perform an interval timing task, where a stimulus of a particular duration is presented to the network, and the readout estimates elapsed time. Show how timing accuracy changes with interval duration. Does the model exhibit higher variability as a function of duration, similar to what is observed behaviorally in humans and other animals (see for example Figure 1c in Wang et al., 2018)?
- 2) How does timing performance change as a function of the network properties, such as excitation-inhibition balance and the distribution of recurrent strengths? How does this relate to the “separation property” discussed in the Maass paper?
- 3) The model is an example of a “population clock” (Buonomano & Laje, 2010). What is some evidence for population clocks in the brain? Why does the Wang paper claim that their results are inconsistent with the population clock hypothesis?

References:

Buonomano, D. V., & Laje, R. (2010). Population clocks: motor timing with neural dynamics. *Trends in Cognitive Sciences*, 14, 520-527.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. *Neural Computation*, 14, 2531-2560.

Wang, J., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible timing by temporal scaling of cortical responses. *Nature Neuroscience*, 21, 102-110.