
Lecture 5: Approximate inference

Samuel Gershman

Harvard University

Roadmap

▶ Exact inference is typically intractable. Can the brain get
close to the right answer?

▶ Sampling approximations harness randomness, achieving
asymptotic correctness in the limit of many samples. Offers a
functional explanation for the ubiquity of noise in the brain.

▶ Variational approximations replace complex posteriors with
simpler parametric forms, converting inference into a more
tractable optimization problem (minimizing free energy). Can
be implemented using a hierarchical architecture in which
feedback signals convey predictions and feedforward signals
convey prediction errors.

Roadmap

▶ Exact inference is typically intractable. Can the brain get
close to the right answer?

▶ Sampling approximations harness randomness, achieving
asymptotic correctness in the limit of many samples. Offers a
functional explanation for the ubiquity of noise in the brain.

▶ Variational approximations replace complex posteriors with
simpler parametric forms, converting inference into a more
tractable optimization problem (minimizing free energy). Can
be implemented using a hierarchical architecture in which
feedback signals convey predictions and feedforward signals
convey prediction errors.

Roadmap

▶ Exact inference is typically intractable. Can the brain get
close to the right answer?

▶ Sampling approximations harness randomness, achieving
asymptotic correctness in the limit of many samples. Offers a
functional explanation for the ubiquity of noise in the brain.

▶ Variational approximations replace complex posteriors with
simpler parametric forms, converting inference into a more
tractable optimization problem (minimizing free energy). Can
be implemented using a hierarchical architecture in which
feedback signals convey predictions and feedforward signals
convey prediction errors.

Contour detection example

▶ Look for the light switch in the dark; brain’s job is to identify
contours that look like light switches.

▶ Contour is a collection of adjacent edges that vary smoothly
over space.

▶ The inference problem is high-dimensional: need to infer the
edge orientation at each point in space (the orientation field).

▶ Can’t be parallelized (edge orientations covary).

Contour detection example

▶ Look for the light switch in the dark; brain’s job is to identify
contours that look like light switches.

▶ Contour is a collection of adjacent edges that vary smoothly
over space.

▶ The inference problem is high-dimensional: need to infer the
edge orientation at each point in space (the orientation field).

▶ Can’t be parallelized (edge orientations covary).

Contour detection example

▶ Look for the light switch in the dark; brain’s job is to identify
contours that look like light switches.

▶ Contour is a collection of adjacent edges that vary smoothly
over space.

▶ The inference problem is high-dimensional: need to infer the
edge orientation at each point in space (the orientation field).

▶ Can’t be parallelized (edge orientations covary).

Contour detection example

▶ Look for the light switch in the dark; brain’s job is to identify
contours that look like light switches.

▶ Contour is a collection of adjacent edges that vary smoothly
over space.

▶ The inference problem is high-dimensional: need to infer the
edge orientation at each point in space (the orientation field).

▶ Can’t be parallelized (edge orientations covary).

Contour detection example

[Field, 1993]

What makes inference hard

▶ Recall our problem: compute the posterior
p(s|x) = p(x |s)p(s)∑

s′ p(x |s′)p(s′)
over hidden state s given data x .

▶ In the contour detection example, x is an image and s is the
orientation at each location in the image.

▶ Hard part is the denominator (the marginal likelihood), which
involves summing over all possible states. In the contour
detection example, this is the space of all possible orientation
fields (exponential in the number of locations).

What makes inference hard

▶ Recall our problem: compute the posterior
p(s|x) = p(x |s)p(s)∑

s′ p(x |s′)p(s′)
over hidden state s given data x .

▶ In the contour detection example, x is an image and s is the
orientation at each location in the image.

▶ Hard part is the denominator (the marginal likelihood), which
involves summing over all possible states. In the contour
detection example, this is the space of all possible orientation
fields (exponential in the number of locations).

What makes inference hard

▶ Recall our problem: compute the posterior
p(s|x) = p(x |s)p(s)∑

s′ p(x |s′)p(s′)
over hidden state s given data x .

▶ In the contour detection example, x is an image and s is the
orientation at each location in the image.

▶ Hard part is the denominator (the marginal likelihood), which
involves summing over all possible states. In the contour
detection example, this is the space of all possible orientation
fields (exponential in the number of locations).

Sampling approximations

▶ Key idea: replace exhaustive enumeration of the hidden states
with a set of K samples, {s1, . . . , sK}, drawn from p(s|x):

p(s|x) ≈ 1

K

K∑
k=1

I[sk = s],

where I[·] = 1 if its argument is true, and 0 otherwise.

▶ The probability of s is approximately equal to the proportion
of samples with that value.

▶ As K gets larger, the approximation gets increasingly accurate.

Sampling approximations

▶ Key idea: replace exhaustive enumeration of the hidden states
with a set of K samples, {s1, . . . , sK}, drawn from p(s|x):

p(s|x) ≈ 1

K

K∑
k=1

I[sk = s],

where I[·] = 1 if its argument is true, and 0 otherwise.

▶ The probability of s is approximately equal to the proportion
of samples with that value.

▶ As K gets larger, the approximation gets increasingly accurate.

Sampling approximations

▶ Key idea: replace exhaustive enumeration of the hidden states
with a set of K samples, {s1, . . . , sK}, drawn from p(s|x):

p(s|x) ≈ 1

K

K∑
k=1

I[sk = s],

where I[·] = 1 if its argument is true, and 0 otherwise.

▶ The probability of s is approximately equal to the proportion
of samples with that value.

▶ As K gets larger, the approximation gets increasingly accurate.

Markov chain Monte Carlo

▶ Generating samples from the posterior is non-trivial.

▶ One strategy is to generate samples from a dynamical system
that converges to the posterior.

▶ When the dynamical system is characterized by a transition
probability T (s ′|s) that doesn’t depend on any previous
samples, it is called a Markov chain, and the sampling
algorithm is a form of Markov chain Monte Carlo (MCMC).

Markov chain Monte Carlo

▶ Generating samples from the posterior is non-trivial.

▶ One strategy is to generate samples from a dynamical system
that converges to the posterior.

▶ When the dynamical system is characterized by a transition
probability T (s ′|s) that doesn’t depend on any previous
samples, it is called a Markov chain, and the sampling
algorithm is a form of Markov chain Monte Carlo (MCMC).

Markov chain Monte Carlo

▶ Generating samples from the posterior is non-trivial.

▶ One strategy is to generate samples from a dynamical system
that converges to the posterior.

▶ When the dynamical system is characterized by a transition
probability T (s ′|s) that doesn’t depend on any previous
samples, it is called a Markov chain, and the sampling
algorithm is a form of Markov chain Monte Carlo (MCMC).

The Metropolis-Hastings algorithm

▶ Factor the transition probability into a proposal distribution
G (s ′|s) and an acceptance distribution A(s ′|s):

T (s ′|s) = G (s ′|s, x)A(s ′|s)

▶ The proposal distribution can be arbitrary. The acceptance
distribution is given by:

A(s ′|s) = min

[
1,

p(s ′, x)G (s|s ′, x)
p(s, x)G (s ′|s, x)

]
▶ Proposals are more likely to be accepted when they increase

probability under p(s, x). The G ratio corrects for sampling
bias.

The Metropolis-Hastings algorithm

▶ Factor the transition probability into a proposal distribution
G (s ′|s) and an acceptance distribution A(s ′|s):

T (s ′|s) = G (s ′|s, x)A(s ′|s)

▶ The proposal distribution can be arbitrary. The acceptance
distribution is given by:

A(s ′|s) = min

[
1,

p(s ′, x)G (s|s ′, x)
p(s, x)G (s ′|s, x)

]

▶ Proposals are more likely to be accepted when they increase
probability under p(s, x). The G ratio corrects for sampling
bias.

The Metropolis-Hastings algorithm

▶ Factor the transition probability into a proposal distribution
G (s ′|s) and an acceptance distribution A(s ′|s):

T (s ′|s) = G (s ′|s, x)A(s ′|s)

▶ The proposal distribution can be arbitrary. The acceptance
distribution is given by:

A(s ′|s) = min

[
1,

p(s ′, x)G (s|s ′, x)
p(s, x)G (s ′|s, x)

]
▶ Proposals are more likely to be accepted when they increase

probability under p(s, x). The G ratio corrects for sampling
bias.

Gibbs sampling

▶ Special case of Metropolis-Hastings, where proposals are
sampled from conditional distributions:

G (s ′|s, x) =
∑
n

p(n)p(s ′n|s/n, x)

where s/n is the set of “sites” excluding site sn, and p(n) is
the probability of modification at site n (typically uniform).

▶ Acceptance probability is always 1.

Gibbs sampling

▶ Special case of Metropolis-Hastings, where proposals are
sampled from conditional distributions:

G (s ′|s, x) =
∑
n

p(n)p(s ′n|s/n, x)

where s/n is the set of “sites” excluding site sn, and p(n) is
the probability of modification at site n (typically uniform).

▶ Acceptance probability is always 1.

Application to contour detection

▶ Let sn ∈ [0, 2π] denote the orientation at location n. The
state vector s is the orientation field.

▶ In natural images, edges at nearby locations tend to have
similar orientations, which motivates a smoothness prior:

p(s) ∝ exp

[∑
n

∑
m

Hnm cos(sn − sm)

]

where Hnm > 0 if locations n and m are neighbors (0
otherwise).

▶ Sensory data x = (x1, . . . , xD) are the spike counts of Poisson
neurons with tuning curves {fd(s)}.

Application to contour detection

▶ Let sn ∈ [0, 2π] denote the orientation at location n. The
state vector s is the orientation field.

▶ In natural images, edges at nearby locations tend to have
similar orientations, which motivates a smoothness prior:

p(s) ∝ exp

[∑
n

∑
m

Hnm cos(sn − sm)

]

where Hnm > 0 if locations n and m are neighbors (0
otherwise).

▶ Sensory data x = (x1, . . . , xD) are the spike counts of Poisson
neurons with tuning curves {fd(s)}.

Application to contour detection

▶ Let sn ∈ [0, 2π] denote the orientation at location n. The
state vector s is the orientation field.

▶ In natural images, edges at nearby locations tend to have
similar orientations, which motivates a smoothness prior:

p(s) ∝ exp

[∑
n

∑
m

Hnm cos(sn − sm)

]

where Hnm > 0 if locations n and m are neighbors (0
otherwise).

▶ Sensory data x = (x1, . . . , xD) are the spike counts of Poisson
neurons with tuning curves {fd(s)}.

Application to contour detection

▶ Spatially localized cosine tuning functions:

fd(sn) = exp

[
1

ν
cos(sn − s∗dn)

]
where s∗dn is the preferred orientation for neuron d at location
n, and ν is the tuning width.

▶ Under a Poisson distribution, we get the following likelihood:

p(x |s) ∝ exp

[
1

ν

∑
d

xd
∑
n

cos(sn − s∗dn)

]

where we have again made use of the assumption that∑
d fd(s) is a constant (satisfied if the tuning functions are

shifted copies of one another and tile the state space).

Application to contour detection

▶ Spatially localized cosine tuning functions:

fd(sn) = exp

[
1

ν
cos(sn − s∗dn)

]
where s∗dn is the preferred orientation for neuron d at location
n, and ν is the tuning width.

▶ Under a Poisson distribution, we get the following likelihood:

p(x |s) ∝ exp

[
1

ν

∑
d

xd
∑
n

cos(sn − s∗dn)

]

where we have again made use of the assumption that∑
d fd(s) is a constant (satisfied if the tuning functions are

shifted copies of one another and tile the state space).

Application to contour detection

▶ Putting it all together with Bayes’ rule:

p(s|x) ∝ exp

[
1

ν

∑
d

xd
∑
n

cos(sn − s∗dn) +
∑
n,m

Hnm cos(sn − sm)

]

▶ Gibbs sampling can be implemented by iterating over
locations and choosing new orientations conditional on the
orientations at the other locations:

p(sn|s/n, x) ∝ exp

[
1

ν

∑
d

xd cos(sn − s∗dn) +
∑
m

Hnm cos(sn − sm)

]

where d sums over all input neurons tuned to location n.

Application to contour detection

▶ Putting it all together with Bayes’ rule:

p(s|x) ∝ exp

[
1

ν

∑
d

xd
∑
n

cos(sn − s∗dn) +
∑
n,m

Hnm cos(sn − sm)

]

▶ Gibbs sampling can be implemented by iterating over
locations and choosing new orientations conditional on the
orientations at the other locations:

p(sn|s/n, x) ∝ exp

[
1

ν

∑
d

xd cos(sn − s∗dn) +
∑
m

Hnm cos(sn − sm)

]

where d sums over all input neurons tuned to location n.

Application to contour detection

▶ If we discretize the orientations into {s̃j}, we can calculate the
normalizing constant of the conditional distribution and
tractably sample from it.

▶ This is just another example of the softmax equation.

Application to contour detection

▶ If we discretize the orientations into {s̃j}, we can calculate the
normalizing constant of the conditional distribution and
tractably sample from it.

▶ This is just another example of the softmax equation.

Mapping to a neural circuit

▶ Let zd(t) ∈ {0, 1} denote the spike train of input neuron d .

▶ Output neurons are indexed both by location (n) and
orientation (j). Each output neuron integrates input spikes
linearly, along with “lateral” contributions from other output
neurons whose spike trains are presented by {ymj(t)}:

Inj(t) =
1

ν

∑
d

zd(t) cos(sn− s∗dn)+
∑
m

Hnm cos(sn− sm)ymj(t)

▶ Membrane potential µnj(t) is a perfect integrator,
C µ̇nj(t) = Inj(t), that is exponentiated to produce the
intensity function (expected firing rate of a Poisson process):
ρnj(t) ∝ exp[µnj(t)]. Feedback inhibition reflects total activity
of neurons tuned to the same location but different
orientations.

Mapping to a neural circuit

▶ Let zd(t) ∈ {0, 1} denote the spike train of input neuron d .

▶ Output neurons are indexed both by location (n) and
orientation (j). Each output neuron integrates input spikes
linearly, along with “lateral” contributions from other output
neurons whose spike trains are presented by {ymj(t)}:

Inj(t) =
1

ν

∑
d

zd(t) cos(sn− s∗dn)+
∑
m

Hnm cos(sn− sm)ymj(t)

▶ Membrane potential µnj(t) is a perfect integrator,
C µ̇nj(t) = Inj(t), that is exponentiated to produce the
intensity function (expected firing rate of a Poisson process):
ρnj(t) ∝ exp[µnj(t)]. Feedback inhibition reflects total activity
of neurons tuned to the same location but different
orientations.

Mapping to a neural circuit

▶ Let zd(t) ∈ {0, 1} denote the spike train of input neuron d .

▶ Output neurons are indexed both by location (n) and
orientation (j). Each output neuron integrates input spikes
linearly, along with “lateral” contributions from other output
neurons whose spike trains are presented by {ymj(t)}:

Inj(t) =
1

ν

∑
d

zd(t) cos(sn− s∗dn)+
∑
m

Hnm cos(sn− sm)ymj(t)

▶ Membrane potential µnj(t) is a perfect integrator,
C µ̇nj(t) = Inj(t), that is exponentiated to produce the
intensity function (expected firing rate of a Poisson process):
ρnj(t) ∝ exp[µnj(t)]. Feedback inhibition reflects total activity
of neurons tuned to the same location but different
orientations.

Demonstration

Ground Truth (Diagonal) Noisy Input Inferred Output (Denoised)

Summary so far

▶ We can view this circuit as implementing a stochastic
dynamical system that converges to the posterior; spikes of
the output neurons are posterior samples.

▶ Sampling models offer a fundamentally different point of
view—noise is a feature, not a bug.

▶ Can we find evidence for neural sampling in the brain?

Summary so far

▶ We can view this circuit as implementing a stochastic
dynamical system that converges to the posterior; spikes of
the output neurons are posterior samples.

▶ Sampling models offer a fundamentally different point of
view—noise is a feature, not a bug.

▶ Can we find evidence for neural sampling in the brain?

Summary so far

▶ We can view this circuit as implementing a stochastic
dynamical system that converges to the posterior; spikes of
the output neurons are posterior samples.

▶ Sampling models offer a fundamentally different point of
view—noise is a feature, not a bug.

▶ Can we find evidence for neural sampling in the brain?

Neural evidence for sampling

▶ Spontaneous neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked
activity should reflect samples from the posterior.

▶ Generally, the posterior will be narrower (lower variance) than
the prior.

▶ Under the sampling hypothesis, neural variability should
increase monotonically with posterior variance. Intuitively, this
is because when variance is high the samples must explore a
broader range of states.

▶ This implies that stimulus onset should “quench” neural
variability, as observed experimentally.

Neural evidence for sampling

▶ Spontaneous neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked
activity should reflect samples from the posterior.

▶ Generally, the posterior will be narrower (lower variance) than
the prior.

▶ Under the sampling hypothesis, neural variability should
increase monotonically with posterior variance. Intuitively, this
is because when variance is high the samples must explore a
broader range of states.

▶ This implies that stimulus onset should “quench” neural
variability, as observed experimentally.

Neural evidence for sampling

▶ Spontaneous neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked
activity should reflect samples from the posterior.

▶ Generally, the posterior will be narrower (lower variance) than
the prior.

▶ Under the sampling hypothesis, neural variability should
increase monotonically with posterior variance. Intuitively, this
is because when variance is high the samples must explore a
broader range of states.

▶ This implies that stimulus onset should “quench” neural
variability, as observed experimentally.

Neural evidence for sampling

▶ Spontaneous neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked
activity should reflect samples from the posterior.

▶ Generally, the posterior will be narrower (lower variance) than
the prior.

▶ Under the sampling hypothesis, neural variability should
increase monotonically with posterior variance. Intuitively, this
is because when variance is high the samples must explore a
broader range of states.

▶ This implies that stimulus onset should “quench” neural
variability, as observed experimentally.

Stimulus onset quenches neural variability

[Churchland et al 2010]
Fano factor: ratio of variance to mean.

Neural evidence for sampling

▶ Increasing uncertainty (e.g., by reducing stimulus contrast)
should increase neural variability.

▶ Consistent with this prediction, neural variability in primary
visual cortex (V1) is higher for low contrast stimuli.

[Orban et al 2016; data from Ecker et al 2010]

Neural evidence for sampling

▶ Increasing uncertainty (e.g., by reducing stimulus contrast)
should increase neural variability.

▶ Consistent with this prediction, neural variability in primary
visual cortex (V1) is higher for low contrast stimuli.

[Orban et al 2016; data from Ecker et al 2010]

Neural evidence for sampling

▶ Stimulus-evoked activity, when averaged across trials, should
resemble spontaneous activity. This is because the expected
posterior is the prior:

E[p(s|x)] =
∑
x

p(x)p(s|x) = p(s)

▶ Critically, this is only true if the stimulus distribution p(x)
reflects the “natural statistics” of stimuli in the real world,
assuming that the brain’s prior, p(s), is adapted to these
statistics.

▶ The distribution of spontaneous activity was more similar to
the marginal distribution of stimulus-evoked activity for
natural images compared to artificial images [Orban et al
2016].

Neural evidence for sampling

▶ Stimulus-evoked activity, when averaged across trials, should
resemble spontaneous activity. This is because the expected
posterior is the prior:

E[p(s|x)] =
∑
x

p(x)p(s|x) = p(s)

▶ Critically, this is only true if the stimulus distribution p(x)
reflects the “natural statistics” of stimuli in the real world,
assuming that the brain’s prior, p(s), is adapted to these
statistics.

▶ The distribution of spontaneous activity was more similar to
the marginal distribution of stimulus-evoked activity for
natural images compared to artificial images [Orban et al
2016].

Neural evidence for sampling

▶ Stimulus-evoked activity, when averaged across trials, should
resemble spontaneous activity. This is because the expected
posterior is the prior:

E[p(s|x)] =
∑
x

p(x)p(s|x) = p(s)

▶ Critically, this is only true if the stimulus distribution p(x)
reflects the “natural statistics” of stimuli in the real world,
assuming that the brain’s prior, p(s), is adapted to these
statistics.

▶ The distribution of spontaneous activity was more similar to
the marginal distribution of stimulus-evoked activity for
natural images compared to artificial images [Orban et al
2016].

Behavioral evidence for sampling

▶ Perceptual multistability arises when the brain switches
repeatedly (and usually stochastically) between different
interpretations of the same visual input.

▶ Ambiguous images like the Necker cube and the face-vase
illusion can be interpreted in different ways by the same
observer over a short interval of time.

▶ Another example is binocular rivalry: when different images
are presented to each eye, typically only one image is
perceived at a time, with stochastic switches between the
dominant image.

Behavioral evidence for sampling

▶ Perceptual multistability arises when the brain switches
repeatedly (and usually stochastically) between different
interpretations of the same visual input.

▶ Ambiguous images like the Necker cube and the face-vase
illusion can be interpreted in different ways by the same
observer over a short interval of time.

▶ Another example is binocular rivalry: when different images
are presented to each eye, typically only one image is
perceived at a time, with stochastic switches between the
dominant image.

Behavioral evidence for sampling

▶ Perceptual multistability arises when the brain switches
repeatedly (and usually stochastically) between different
interpretations of the same visual input.

▶ Ambiguous images like the Necker cube and the face-vase
illusion can be interpreted in different ways by the same
observer over a short interval of time.

▶ Another example is binocular rivalry: when different images
are presented to each eye, typically only one image is
perceived at a time, with stochastic switches between the
dominant image.

Binocular rivalry

A probabilistic model of binocular rivalry

4 S. Gershman, E. Vul, and J. Tenenbaum

Latent image

Outlier process

Re!nal image

Figure 1: Generative model. Schematic illustrating the probabilistic process by
which retinal images are generated. Shaded nodes denote observed variables;
unshaded nodes denote unobserved (latent) variables. Arrows denote causal
dependencies.

to supplement it by providing a normative statistical motivation for the
dynamical processes posited by these models. We believe these ideas are
best illustrated in a simplified setting, in which their mechanistic principles
are relatively transparent. The idea of sampling over a graphical model
structure is very general and can be applied to more sophisticated versions
of the model we present.

2 A Probabilistic Model of Binocular Rivalry

Our starting point is a probabilistic generative model of retinal images
that represents the brain’s assumptions about how its sensory inputs were
generated (see Figure 1). Formally, this model is a variant of a Markov Ran-
dom Field (MRF), one of the most standard forms of probabilistic graphical
model used in computer vision (Geman & Geman, 1984). In the appendix,
we describe this model mathematically, but here we focus on the basic in-
tuitions behind this model. The model posits two sets of latent variables:
a latent scene and an eye-specific outlier process that governs whether a
given patch of retina observes the latent scene. The goal of the visual system
is to infer the underlying image given the observed retinal input.

We represent the latent scene and the two retinal images as arrays of
luminance values (e.g., a 32 × 32 grayscale pixel image), while the outlier
processes are represented as binary arrays of the same size. The luminance
values for the pixels in each eye are the noise-perturbed luminance of the

8 S. Gershman, E. Vul, and J. Tenenbaum

50 100 150 200 250 300 350 400

5

10

15

20

25

Time
P

er
ce

pt
ua

l s
ta

te

A

0 0.5 1 1.5 2 2.5
0

0.5

1

Dominance duration

P
ro

ba
bi

lit
y

B

α=1.44
β=0.69

Simulated
Empirical

Figure 2: Perceptual switching dynamics. (A) Simulated time course of bista-
bility. Plotted on the y-axis is the number of nodes with value greater than 0.5.
The horizontal lines show the thresholds for a perceptual switch. (B) Distribu-
tion of simulated dominance durations (mean-normalized) for MRF with lattice
topology. Curves show gamma distributions fitted to simulated (with parame-
ter values shown on the right) and empirical data, replotted from Mamassian
and Goutcher (2005).

dominance durations fall naturally out of MCMC operating on a spatially
smooth MRF.

4.2 Piecemeal Rivalry and Traveling Waves. Another empirical obser-
vation about spatiotemporal dynamics in rivalry is that stability is often
incomplete across the visual field, producing piecemeal rivalry, in which
one portion of the visual field looks like the image in one eye, while another
portion looks like the image in the other eye (Mueller & Blake, 1989). One
intriguing feature of these piecemeal percepts is the phenomenon known
as traveling waves: subjects tend to perceive a perceptual switch as a wave
propagating over the visual field (Wilson, Blake, & Lee, 2001; Lee, Blake, &
Heeger, 2005): the suppressed stimulus becomes dominant in an isolated lo-
cation of the visual field and then gradually spreads. These traveling waves
reveal an interesting local dynamics during an individual switch itself.

Demonstrating the dynamics of traveling waves within patches of the
percept requires a different method of probing perception instead of asking

[Gershman et al 2012]

Piecemeal rivalry

▶ Switches are not always all-or-none: large images produce
“piecemeal” switches, where one part of the image switches
before other parts [O’Shea et al 1997].

▶ This makes sense if sampling is operating at the level of image
parts. For larger images, the dependencies between different
parts become weaker, allowing piecemeal switches.

Piecemeal rivalry

▶ Switches are not always all-or-none: large images produce
“piecemeal” switches, where one part of the image switches
before other parts [O’Shea et al 1997].

▶ This makes sense if sampling is operating at the level of image
parts. For larger images, the dependencies between different
parts become weaker, allowing piecemeal switches.

Traveling waves in binocular rivalry

Multistability and Perceptual Inference 9

Figure 3: Traveling waves. (A) Annular stimuli used by Lee et al. (2005)
(left and center panels) and the subject percept reported by observers (right
panel), in which the low-contrast stimulus was seen to spread around the annu-
lus, starting at the top. Figure reprinted with permission from Lee et al. (2005).
(B) Propagation time as a function of distance around the annulus, replotted
from Wilson et al. (2001). Filled circles represent radial gratings, and open
circles represent concentric gratings. A transient increase in contrast of the sup-
pressed stimulus induces a perceptual switch at the location of contrast change.
The propagation time for a switch at a probe location increases with distance
(around the annulus) from the switch origin. (C) Simulated propagation time
(measured by the time to switch percept following a switch at varying distances
around the annulus). (D) Average simulated propagation time between nodes
separated by a gap compared to nodes without a gap.

subjects to evaluate the “global percept.” Wilson et al. (2001) used annular
stimuli (see Figure 3A) and probed a particular patch along the annulus.
They showed that the time at which the suppressed stimulus in the test patch
becomes dominant is a function of the distance (around the circumference
of the annulus) between the test patch and the patch where a dominance
switch was induced by transiently increasing the contrast of the suppressed
stimulus (see Figure 3B). This dependence of switch time on distance sug-
gested to Wilson et al. that stimulus dominance was propagating around the
annulus. Wilson et al. made two additional observations about the nature

[Wilson et al 2001; Lee et al 2005; Gershman et al 2012]

Fusion in binocular rivalry

▶ Fusion is more likely when both images are low contrast [Burke
et al 1999] and when they are similar [Knapen et al 2007].

▶ Under the sampling hypothesis, fusion arises when the two
posterior modes are not well-separated, either because their
variances are large (low contrast) or because their modes are
near one another (high similarity). In this case, sampling
doesn’t bounce as much between the two modes, but instead
spends more time in the high density area between them.

Fusion in binocular rivalry

▶ Fusion is more likely when both images are low contrast [Burke
et al 1999] and when they are similar [Knapen et al 2007].

▶ Under the sampling hypothesis, fusion arises when the two
posterior modes are not well-separated, either because their
variances are large (low contrast) or because their modes are
near one another (high similarity). In this case, sampling
doesn’t bounce as much between the two modes, but instead
spends more time in the high density area between them.

Variational approximations

▶ MCMC algorithms are asymptotically correct: if you run them
long enough, you’ll approximate the posterior to an arbitrary
degree of precision.

▶ However, you might need to run them a long time if the
problem is complex.

▶ Alternative: use an approximation algorithm that produces an
answer more quickly, but doesn’t enjoy asymptotic
correctness. Variational approximations offer a general
framework for doing this.

Variational approximations

▶ MCMC algorithms are asymptotically correct: if you run them
long enough, you’ll approximate the posterior to an arbitrary
degree of precision.

▶ However, you might need to run them a long time if the
problem is complex.

▶ Alternative: use an approximation algorithm that produces an
answer more quickly, but doesn’t enjoy asymptotic
correctness. Variational approximations offer a general
framework for doing this.

Variational approximations

▶ MCMC algorithms are asymptotically correct: if you run them
long enough, you’ll approximate the posterior to an arbitrary
degree of precision.

▶ However, you might need to run them a long time if the
problem is complex.

▶ Alternative: use an approximation algorithm that produces an
answer more quickly, but doesn’t enjoy asymptotic
correctness. Variational approximations offer a general
framework for doing this.

Free energy minimization

▶ Basic idea: turn inference into a constrained optimization
problem.

▶ Goal: find an approximate posterior q ∈ Q that gets closest to
the posterior, where Q is chosen in such a way that both
finding and evaluating q is relatively fast.

▶ Optimization problem:

q∗ = argmin
q∈Q

F [q(s|x)]

where F [q(s|x)] = ∑
s q(s|x) log

q(s|x)
p(x ,s) is the variational free

energy.

▶ Equivalent to minimizing KL divergence between q(s|x) and
p(s|x).

Free energy minimization

▶ Basic idea: turn inference into a constrained optimization
problem.

▶ Goal: find an approximate posterior q ∈ Q that gets closest to
the posterior, where Q is chosen in such a way that both
finding and evaluating q is relatively fast.

▶ Optimization problem:

q∗ = argmin
q∈Q

F [q(s|x)]

where F [q(s|x)] = ∑
s q(s|x) log

q(s|x)
p(x ,s) is the variational free

energy.

▶ Equivalent to minimizing KL divergence between q(s|x) and
p(s|x).

Free energy minimization

▶ Basic idea: turn inference into a constrained optimization
problem.

▶ Goal: find an approximate posterior q ∈ Q that gets closest to
the posterior, where Q is chosen in such a way that both
finding and evaluating q is relatively fast.

▶ Optimization problem:

q∗ = argmin
q∈Q

F [q(s|x)]

where F [q(s|x)] = ∑
s q(s|x) log

q(s|x)
p(x ,s) is the variational free

energy.

▶ Equivalent to minimizing KL divergence between q(s|x) and
p(s|x).

Free energy minimization

▶ Basic idea: turn inference into a constrained optimization
problem.

▶ Goal: find an approximate posterior q ∈ Q that gets closest to
the posterior, where Q is chosen in such a way that both
finding and evaluating q is relatively fast.

▶ Optimization problem:

q∗ = argmin
q∈Q

F [q(s|x)]

where F [q(s|x)] = ∑
s q(s|x) log

q(s|x)
p(x ,s) is the variational free

energy.

▶ Equivalent to minimizing KL divergence between q(s|x) and
p(s|x).

The Laplace approximation

▶ Restrict Q to the set of Gaussian posteriors:
q(s|x) = N (s; ŝ,Σ), where the mean and covariance are
variational parameters.

▶ We can obtain a tractable approximation of the free energy if
we linearize log p(x , s) with a second-order Taylor series
expansion around ŝ:

log p(x , s) ≈ log p(x , ŝ)+(s−ŝ)⊤∇s log p(x , ŝ)−
1

2
(s−ŝ)⊤Λ(s−ŝ)

where Λ = −∇s∇s log p(x , ŝ) is the Hessian (matrix of 2nd
derivatives) of the negative log likelihood evaluated at ŝ.

The Laplace approximation

▶ Restrict Q to the set of Gaussian posteriors:
q(s|x) = N (s; ŝ,Σ), where the mean and covariance are
variational parameters.

▶ We can obtain a tractable approximation of the free energy if
we linearize log p(x , s) with a second-order Taylor series
expansion around ŝ:

log p(x , s) ≈ log p(x , ŝ)+(s−ŝ)⊤∇s log p(x , ŝ)−
1

2
(s−ŝ)⊤Λ(s−ŝ)

where Λ = −∇s∇s log p(x , ŝ) is the Hessian (matrix of 2nd
derivatives) of the negative log likelihood evaluated at ŝ.

The Laplace approximation

Predictive coding

▶ Under the Gaussian variational family and the Laplace
approximation, we can derive a hierarchical architecture for
inference.

<latexit sha1_base64="tahV8B3ZNCJaxXuC+f8wOkL0MKk=">AAACJXicbVBNb9NAEF23QEMo0JQjF4sIqafIrlraYyR64Bgk8iHFUTTeTJJV9sPaHTdEln8EV/oD+DXcEBIn/grrxAdIeNJIT+/NaGZemknhKIp+BUfHjx4/OWk8bT47ff7i5VnrfOBMbjn2uZHGjlJwKIXGPgmSOMosgkolDtPV+8of3qN1wuhPtMlwomChxVxwIC8NkyVQ4crpWTvqRFuEhySuSZvV6E1bQSOZGZ4r1MQlODeOo4wmBVgSXGLZTHKHGfAVLHDsqQaFblJs7y3Dt16ZhXNjfWkKt+rfEwUo5zYq9Z0KaOn2vUr8nzfOaX47KYTOckLNd4vmuQzJhNXz4UxY5CQ3ngC3wt8a8iVY4OQjaiYa19woBXpWJGAXCj6XRWIytEDGVi+sBS2lUIJcUftl02cX7yd1SAaXnfhd5/rjVbt7V6fYYK/ZG3bBYnbDuuwD67E+42zFvrCv7CH4FnwPfgQ/d61HQT3ziv2D4PcfBOGmpQ==</latexit>

ŝ
<latexit sha1_base64="GfelwmhxLoDrc3qcdp3SAMp8H0k=">AAACJXicbVBNT9tAEF0DbdP0AwJHLhZRpZ4iuyq0x0hw4BgkkiDFERpvJskq+2Htjhsiyz+i1/ID+DXcUKWe+CusEx9a6JNGenpvRjPz0kwKR1H0J9ja3nn1+k3jbfPd+w8fd/da+wNncsuxz4009ioFh1Jo7JMgiVeZRVCpxGG6OK384Q+0Thh9SasMxwpmWkwFB/LSMEnBFq683mtHnWiN8CWJa9JmNXrXraCRTAzPFWriEpwbxVFG4wIsCS6xbCa5wwz4AmY48lSDQjcu1veW4SevTMKpsb40hWv174kClHMrlfpOBTR3z71K/J83ymn6fVwIneWEmm8WTXMZkgmr58OJsMhJrjwBboW/NeRzsMDJR9RMNC65UQr0pEjAzhTclEViMrRAxlYvLAXNpVCCXFH7ZdNnFz9P6iUZfOnEJ53ji6/t7lmdYoMdsiP2mcXsG+uyc9ZjfcbZgv1kv9htcBfcBw/B703rVlDPHLB/EDw+AfbWpp0=</latexit>

s̄
<latexit sha1_base64="rSodRW1TeMQ/8KAa6IajpBHnMAw=">AAACH3icbVDJSgNBEO1xjXGNHr0MBsFTmBG3o6AHjxGMCpkgNZ1K0tjL0F2jhiFf4FU/wK/xJl79GztxDm4PCh7vVVFVL82kcBRFH8HU9Mzs3Hxlobq4tLyyulZbv3Qmtxxb3Ehjr1NwKIXGFgmSeJ1ZBJVKvEpvT8b+1R1aJ4y+oGGGHQV9LXqCA3np/OFmrR41ognCvyQuSZ2VaN7UgkrSNTxXqIlLcK4dRxl1CrAkuMRRNckdZsBvoY9tTzUodJ1icuko3PZKN+wZ60tTOFG/TxSgnBuq1HcqoIH77Y3F/7x2Tr2jTiF0lhNq/rWol8uQTDh+O+wKi5zk0BPgVvhbQz4AC5x8ONVE4z03SoHuFgnYvoKHUZGYDC2QseMX7gUNpFCCXFH6o6rPLv6d1F9yuduIDxr753v149MyxQrbZFtsh8XskB2zM9ZkLcYZskf2xJ6Dl+A1eAvev1qngnJmg/1A8PEJtQqj3Q==</latexit>x

Error

PredictionPrediction

<latexit sha1_base64="5jSW/5VPbB9gNKd+5ye94j2nDCA=">AAACLHicbVDLThtBEJwlkBhDwuvIZYSFBIdYu4g8jkhcciQSBiSvQb3jXnvEPFYzvQFrtf+Ra/IB+RouCOXKdzA2e+BVUkulqm51d2WFkp7i+Daaeze/8P5Da7G9tPzx08rq2vqJt6UT2BNWWXeWgUclDfZIksKzwiHoTOFpdnk49U9/ofPSmmOaFDjQMDIylwIoSOfX/DPPd9IxUOXr3YvVTtyNZ+CvSdKQDmtwdLEWtdKhFaVGQ0KB9/0kLmhQgSMpFNbttPRYgLiEEfYDNaDRD6rZ2TXfDsqQ59aFMsRn6tOJCrT3E52FTg009i+9qfiW1y8p/z6opClKQiMeF+Wl4mT5NAM+lA4FqUkgIJwMt3IxBgeCQlLt1OCVsFqDGVYpuJGG67pKbYEOyLrpC1eSxkpqSb5q/LodskteJvWanOx1k6/dLz/3Owf7TYottsm22A5L2Dd2wH6wI9Zjgjn2m/1hf6N/0U10F/1/bJ2LmpkN9gzR/QPgDqh3</latexit>

x � f(ŝ) <latexit sha1_base64="z4Sx6nFJIc98INW2Y42lDfhphG0=">AAACMXicbZDLThtBEEV7IBDH4WGTJZtWrEhssGYQJFkisWEJEgYkj2XVtMt2i36MumviWKP5lGzDB/A17BBbfiJtM4vwKKmlo3urVNU3y5X0FMf30crqh7X1j41Pzc8bm1vbrfbOpbeFE9gTVll3nYFHJQ32SJLC69wh6EzhVXZzsvCvfqHz0poLmuc40DAxciwFUJCGrXY6BSp9xfd5moELNGx14m68LP4Wkho6rK6zYTtqpCMrCo2GhALv+0mc06AER1IorJpp4TEHcQMT7Ac0oNEPyuXtFf8WlBEfWxeeIb5U/58oQXs/11no1EBT/9pbiO95/YLGPwelNHlBaMTzonGhOFm+CIKPpENBah4AhJPhVi6m4EBQiKuZGpwJqzWYUZmCm2j4XZWpzdEBWbf4wkzSVEktyZe1XzVDdsnrpN7C5UE3+d49Oj/sHB/WKTbYLvvK9ljCfrBjdsrOWI8JNmN/2F92G91F99FD9PjcuhLVM1/Yi4qe/gEDnaqT</latexit>

ŝ � s̄

Error

<latexit sha1_base64="r2galKso+VGABC9Jf9zDmbDCPYs=">AAACH3icbVDJSgNBEO1xjXHXo5fBIHgKM+J2FPTgMQGjQiZITaeSNPYydNeoYcgXeNUP8Gu8iVf/xk6cg9uDgsd7VVTVSzMpHEXRRzA1PTM7N19ZqC4uLa+srq1vXDqTW44tbqSx1yk4lEJjiwRJvM4sgkolXqW3p2P/6g6tE0Zf0DDDjoK+Fj3BgbzUdDdrtageTRD+JXFJaqxE42Y9qCRdw3OFmrgE59pxlFGnAEuCSxxVk9xhBvwW+tj2VINC1ykml47CHa90w56xvjSFE/X7RAHKuaFKfacCGrjf3lj8z2vn1DvuFEJnOaHmX4t6uQzJhOO3w66wyEkOPQFuhb815AOwwMmHU0003nOjFOhukYDtK3gYFYnJ0AIZO37hXtBACiXIFaU/qvrs4t9J/SWXe/X4sH7Q3K+dnJUpVtgW22a7LGZH7ISdswZrMc6QPbIn9hy8BK/BW/D+1ToVlDOb7AeCj0+sY6PY</latexit>s

▶ “Prediction” neurons y(t) report the inferred state, ŝ. They
receive input from “error” neurons reporting the difference
between observed and expected signals.

▶ Two kinds of error neurons: “bottom-up” error neurons report
the difference between sensory signals z(t) and the expected
firing rate under the inferred state, f (ŝ); “top-down” error
neurons report the difference between the inferred state and
the expected state under the prior distribution, s̄.

Predictive coding

▶ Under the Gaussian variational family and the Laplace
approximation, we can derive a hierarchical architecture for
inference.

<latexit sha1_base64="tahV8B3ZNCJaxXuC+f8wOkL0MKk=">AAACJXicbVBNb9NAEF23QEMo0JQjF4sIqafIrlraYyR64Bgk8iHFUTTeTJJV9sPaHTdEln8EV/oD+DXcEBIn/grrxAdIeNJIT+/NaGZemknhKIp+BUfHjx4/OWk8bT47ff7i5VnrfOBMbjn2uZHGjlJwKIXGPgmSOMosgkolDtPV+8of3qN1wuhPtMlwomChxVxwIC8NkyVQ4crpWTvqRFuEhySuSZvV6E1bQSOZGZ4r1MQlODeOo4wmBVgSXGLZTHKHGfAVLHDsqQaFblJs7y3Dt16ZhXNjfWkKt+rfEwUo5zYq9Z0KaOn2vUr8nzfOaX47KYTOckLNd4vmuQzJhNXz4UxY5CQ3ngC3wt8a8iVY4OQjaiYa19woBXpWJGAXCj6XRWIytEDGVi+sBS2lUIJcUftl02cX7yd1SAaXnfhd5/rjVbt7V6fYYK/ZG3bBYnbDuuwD67E+42zFvrCv7CH4FnwPfgQ/d61HQT3ziv2D4PcfBOGmpQ==</latexit>

ŝ
<latexit sha1_base64="GfelwmhxLoDrc3qcdp3SAMp8H0k=">AAACJXicbVBNT9tAEF0DbdP0AwJHLhZRpZ4iuyq0x0hw4BgkkiDFERpvJskq+2Htjhsiyz+i1/ID+DXcUKWe+CusEx9a6JNGenpvRjPz0kwKR1H0J9ja3nn1+k3jbfPd+w8fd/da+wNncsuxz4009ioFh1Jo7JMgiVeZRVCpxGG6OK384Q+0Thh9SasMxwpmWkwFB/LSMEnBFq683mtHnWiN8CWJa9JmNXrXraCRTAzPFWriEpwbxVFG4wIsCS6xbCa5wwz4AmY48lSDQjcu1veW4SevTMKpsb40hWv174kClHMrlfpOBTR3z71K/J83ymn6fVwIneWEmm8WTXMZkgmr58OJsMhJrjwBboW/NeRzsMDJR9RMNC65UQr0pEjAzhTclEViMrRAxlYvLAXNpVCCXFH7ZdNnFz9P6iUZfOnEJ53ji6/t7lmdYoMdsiP2mcXsG+uyc9ZjfcbZgv1kv9htcBfcBw/B703rVlDPHLB/EDw+AfbWpp0=</latexit>

s̄
<latexit sha1_base64="rSodRW1TeMQ/8KAa6IajpBHnMAw=">AAACH3icbVDJSgNBEO1xjXGNHr0MBsFTmBG3o6AHjxGMCpkgNZ1K0tjL0F2jhiFf4FU/wK/xJl79GztxDm4PCh7vVVFVL82kcBRFH8HU9Mzs3Hxlobq4tLyyulZbv3Qmtxxb3Ehjr1NwKIXGFgmSeJ1ZBJVKvEpvT8b+1R1aJ4y+oGGGHQV9LXqCA3np/OFmrR41ognCvyQuSZ2VaN7UgkrSNTxXqIlLcK4dRxl1CrAkuMRRNckdZsBvoY9tTzUodJ1icuko3PZKN+wZ60tTOFG/TxSgnBuq1HcqoIH77Y3F/7x2Tr2jTiF0lhNq/rWol8uQTDh+O+wKi5zk0BPgVvhbQz4AC5x8ONVE4z03SoHuFgnYvoKHUZGYDC2QseMX7gUNpFCCXFH6o6rPLv6d1F9yuduIDxr753v149MyxQrbZFtsh8XskB2zM9ZkLcYZskf2xJ6Dl+A1eAvev1qngnJmg/1A8PEJtQqj3Q==</latexit>x

Error

PredictionPrediction

<latexit sha1_base64="5jSW/5VPbB9gNKd+5ye94j2nDCA=">AAACLHicbVDLThtBEJwlkBhDwuvIZYSFBIdYu4g8jkhcciQSBiSvQb3jXnvEPFYzvQFrtf+Ra/IB+RouCOXKdzA2e+BVUkulqm51d2WFkp7i+Daaeze/8P5Da7G9tPzx08rq2vqJt6UT2BNWWXeWgUclDfZIksKzwiHoTOFpdnk49U9/ofPSmmOaFDjQMDIylwIoSOfX/DPPd9IxUOXr3YvVTtyNZ+CvSdKQDmtwdLEWtdKhFaVGQ0KB9/0kLmhQgSMpFNbttPRYgLiEEfYDNaDRD6rZ2TXfDsqQ59aFMsRn6tOJCrT3E52FTg009i+9qfiW1y8p/z6opClKQiMeF+Wl4mT5NAM+lA4FqUkgIJwMt3IxBgeCQlLt1OCVsFqDGVYpuJGG67pKbYEOyLrpC1eSxkpqSb5q/LodskteJvWanOx1k6/dLz/3Owf7TYottsm22A5L2Dd2wH6wI9Zjgjn2m/1hf6N/0U10F/1/bJ2LmpkN9gzR/QPgDqh3</latexit>

x � f(ŝ) <latexit sha1_base64="z4Sx6nFJIc98INW2Y42lDfhphG0=">AAACMXicbZDLThtBEEV7IBDH4WGTJZtWrEhssGYQJFkisWEJEgYkj2XVtMt2i36MumviWKP5lGzDB/A17BBbfiJtM4vwKKmlo3urVNU3y5X0FMf30crqh7X1j41Pzc8bm1vbrfbOpbeFE9gTVll3nYFHJQ32SJLC69wh6EzhVXZzsvCvfqHz0poLmuc40DAxciwFUJCGrXY6BSp9xfd5moELNGx14m68LP4Wkho6rK6zYTtqpCMrCo2GhALv+0mc06AER1IorJpp4TEHcQMT7Ac0oNEPyuXtFf8WlBEfWxeeIb5U/58oQXs/11no1EBT/9pbiO95/YLGPwelNHlBaMTzonGhOFm+CIKPpENBah4AhJPhVi6m4EBQiKuZGpwJqzWYUZmCm2j4XZWpzdEBWbf4wkzSVEktyZe1XzVDdsnrpN7C5UE3+d49Oj/sHB/WKTbYLvvK9ljCfrBjdsrOWI8JNmN/2F92G91F99FD9PjcuhLVM1/Yi4qe/gEDnaqT</latexit>

ŝ � s̄

Error

<latexit sha1_base64="r2galKso+VGABC9Jf9zDmbDCPYs=">AAACH3icbVDJSgNBEO1xjXHXo5fBIHgKM+J2FPTgMQGjQiZITaeSNPYydNeoYcgXeNUP8Gu8iVf/xk6cg9uDgsd7VVTVSzMpHEXRRzA1PTM7N19ZqC4uLa+srq1vXDqTW44tbqSx1yk4lEJjiwRJvM4sgkolXqW3p2P/6g6tE0Zf0DDDjoK+Fj3BgbzUdDdrtageTRD+JXFJaqxE42Y9qCRdw3OFmrgE59pxlFGnAEuCSxxVk9xhBvwW+tj2VINC1ykml47CHa90w56xvjSFE/X7RAHKuaFKfacCGrjf3lj8z2vn1DvuFEJnOaHmX4t6uQzJhOO3w66wyEkOPQFuhb815AOwwMmHU0003nOjFOhukYDtK3gYFYnJ0AIZO37hXtBACiXIFaU/qvrs4t9J/SWXe/X4sH7Q3K+dnJUpVtgW22a7LGZH7ISdswZrMc6QPbIn9hy8BK/BW/D+1ToVlDOb7AeCj0+sY6PY</latexit>s

▶ “Prediction” neurons y(t) report the inferred state, ŝ. They
receive input from “error” neurons reporting the difference
between observed and expected signals.

▶ Two kinds of error neurons: “bottom-up” error neurons report
the difference between sensory signals z(t) and the expected
firing rate under the inferred state, f (ŝ); “top-down” error
neurons report the difference between the inferred state and
the expected state under the prior distribution, s̄.

Predictive coding

▶ Under the Gaussian variational family and the Laplace
approximation, we can derive a hierarchical architecture for
inference.

<latexit sha1_base64="tahV8B3ZNCJaxXuC+f8wOkL0MKk=">AAACJXicbVBNb9NAEF23QEMo0JQjF4sIqafIrlraYyR64Bgk8iHFUTTeTJJV9sPaHTdEln8EV/oD+DXcEBIn/grrxAdIeNJIT+/NaGZemknhKIp+BUfHjx4/OWk8bT47ff7i5VnrfOBMbjn2uZHGjlJwKIXGPgmSOMosgkolDtPV+8of3qN1wuhPtMlwomChxVxwIC8NkyVQ4crpWTvqRFuEhySuSZvV6E1bQSOZGZ4r1MQlODeOo4wmBVgSXGLZTHKHGfAVLHDsqQaFblJs7y3Dt16ZhXNjfWkKt+rfEwUo5zYq9Z0KaOn2vUr8nzfOaX47KYTOckLNd4vmuQzJhNXz4UxY5CQ3ngC3wt8a8iVY4OQjaiYa19woBXpWJGAXCj6XRWIytEDGVi+sBS2lUIJcUftl02cX7yd1SAaXnfhd5/rjVbt7V6fYYK/ZG3bBYnbDuuwD67E+42zFvrCv7CH4FnwPfgQ/d61HQT3ziv2D4PcfBOGmpQ==</latexit>

ŝ
<latexit sha1_base64="GfelwmhxLoDrc3qcdp3SAMp8H0k=">AAACJXicbVBNT9tAEF0DbdP0AwJHLhZRpZ4iuyq0x0hw4BgkkiDFERpvJskq+2Htjhsiyz+i1/ID+DXcUKWe+CusEx9a6JNGenpvRjPz0kwKR1H0J9ja3nn1+k3jbfPd+w8fd/da+wNncsuxz4009ioFh1Jo7JMgiVeZRVCpxGG6OK384Q+0Thh9SasMxwpmWkwFB/LSMEnBFq683mtHnWiN8CWJa9JmNXrXraCRTAzPFWriEpwbxVFG4wIsCS6xbCa5wwz4AmY48lSDQjcu1veW4SevTMKpsb40hWv174kClHMrlfpOBTR3z71K/J83ymn6fVwIneWEmm8WTXMZkgmr58OJsMhJrjwBboW/NeRzsMDJR9RMNC65UQr0pEjAzhTclEViMrRAxlYvLAXNpVCCXFH7ZdNnFz9P6iUZfOnEJ53ji6/t7lmdYoMdsiP2mcXsG+uyc9ZjfcbZgv1kv9htcBfcBw/B703rVlDPHLB/EDw+AfbWpp0=</latexit>

s̄
<latexit sha1_base64="rSodRW1TeMQ/8KAa6IajpBHnMAw=">AAACH3icbVDJSgNBEO1xjXGNHr0MBsFTmBG3o6AHjxGMCpkgNZ1K0tjL0F2jhiFf4FU/wK/xJl79GztxDm4PCh7vVVFVL82kcBRFH8HU9Mzs3Hxlobq4tLyyulZbv3Qmtxxb3Ehjr1NwKIXGFgmSeJ1ZBJVKvEpvT8b+1R1aJ4y+oGGGHQV9LXqCA3np/OFmrR41ognCvyQuSZ2VaN7UgkrSNTxXqIlLcK4dRxl1CrAkuMRRNckdZsBvoY9tTzUodJ1icuko3PZKN+wZ60tTOFG/TxSgnBuq1HcqoIH77Y3F/7x2Tr2jTiF0lhNq/rWol8uQTDh+O+wKi5zk0BPgVvhbQz4AC5x8ONVE4z03SoHuFgnYvoKHUZGYDC2QseMX7gUNpFCCXFH6o6rPLv6d1F9yuduIDxr753v149MyxQrbZFtsh8XskB2zM9ZkLcYZskf2xJ6Dl+A1eAvev1qngnJmg/1A8PEJtQqj3Q==</latexit>x

Error

PredictionPrediction

<latexit sha1_base64="5jSW/5VPbB9gNKd+5ye94j2nDCA=">AAACLHicbVDLThtBEJwlkBhDwuvIZYSFBIdYu4g8jkhcciQSBiSvQb3jXnvEPFYzvQFrtf+Ra/IB+RouCOXKdzA2e+BVUkulqm51d2WFkp7i+Daaeze/8P5Da7G9tPzx08rq2vqJt6UT2BNWWXeWgUclDfZIksKzwiHoTOFpdnk49U9/ofPSmmOaFDjQMDIylwIoSOfX/DPPd9IxUOXr3YvVTtyNZ+CvSdKQDmtwdLEWtdKhFaVGQ0KB9/0kLmhQgSMpFNbttPRYgLiEEfYDNaDRD6rZ2TXfDsqQ59aFMsRn6tOJCrT3E52FTg009i+9qfiW1y8p/z6opClKQiMeF+Wl4mT5NAM+lA4FqUkgIJwMt3IxBgeCQlLt1OCVsFqDGVYpuJGG67pKbYEOyLrpC1eSxkpqSb5q/LodskteJvWanOx1k6/dLz/3Owf7TYottsm22A5L2Dd2wH6wI9Zjgjn2m/1hf6N/0U10F/1/bJ2LmpkN9gzR/QPgDqh3</latexit>

x � f(ŝ) <latexit sha1_base64="z4Sx6nFJIc98INW2Y42lDfhphG0=">AAACMXicbZDLThtBEEV7IBDH4WGTJZtWrEhssGYQJFkisWEJEgYkj2XVtMt2i36MumviWKP5lGzDB/A17BBbfiJtM4vwKKmlo3urVNU3y5X0FMf30crqh7X1j41Pzc8bm1vbrfbOpbeFE9gTVll3nYFHJQ32SJLC69wh6EzhVXZzsvCvfqHz0poLmuc40DAxciwFUJCGrXY6BSp9xfd5moELNGx14m68LP4Wkho6rK6zYTtqpCMrCo2GhALv+0mc06AER1IorJpp4TEHcQMT7Ac0oNEPyuXtFf8WlBEfWxeeIb5U/58oQXs/11no1EBT/9pbiO95/YLGPwelNHlBaMTzonGhOFm+CIKPpENBah4AhJPhVi6m4EBQiKuZGpwJqzWYUZmCm2j4XZWpzdEBWbf4wkzSVEktyZe1XzVDdsnrpN7C5UE3+d49Oj/sHB/WKTbYLvvK9ljCfrBjdsrOWI8JNmN/2F92G91F99FD9PjcuhLVM1/Yi4qe/gEDnaqT</latexit>

ŝ � s̄

Error

<latexit sha1_base64="r2galKso+VGABC9Jf9zDmbDCPYs=">AAACH3icbVDJSgNBEO1xjXHXo5fBIHgKM+J2FPTgMQGjQiZITaeSNPYydNeoYcgXeNUP8Gu8iVf/xk6cg9uDgsd7VVTVSzMpHEXRRzA1PTM7N19ZqC4uLa+srq1vXDqTW44tbqSx1yk4lEJjiwRJvM4sgkolXqW3p2P/6g6tE0Zf0DDDjoK+Fj3BgbzUdDdrtageTRD+JXFJaqxE42Y9qCRdw3OFmrgE59pxlFGnAEuCSxxVk9xhBvwW+tj2VINC1ykml47CHa90w56xvjSFE/X7RAHKuaFKfacCGrjf3lj8z2vn1DvuFEJnOaHmX4t6uQzJhOO3w66wyEkOPQFuhb815AOwwMmHU0003nOjFOhukYDtK3gYFYnJ0AIZO37hXtBACiXIFaU/qvrs4t9J/SWXe/X4sH7Q3K+dnJUpVtgW22a7LGZH7ISdswZrMc6QPbIn9hy8BK/BW/D+1ToVlDOb7AeCj0+sY6PY</latexit>s

▶ “Prediction” neurons y(t) report the inferred state, ŝ. They
receive input from “error” neurons reporting the difference
between observed and expected signals.

▶ Two kinds of error neurons: “bottom-up” error neurons report
the difference between sensory signals z(t) and the expected
firing rate under the inferred state, f (ŝ); “top-down” error
neurons report the difference between the inferred state and
the expected state under the prior distribution, s̄.

Evidence for predictive coding

▶ Predictive coding suggests that predictions should suppress
lower-level error signals.

▶ V1 neurons in layers 2/3 (the feedforward pathway thought to
convey errors) fire more when novel images are presented, and
these novelty responses decrease as the images are repeatedly
presented [Homan et al 2022].

▶ Higher-level visual areas respond more to images with
coherent shape structure, accompanied by decreases in the
responses of lower-level regions.

Evidence for predictive coding

▶ Predictive coding suggests that predictions should suppress
lower-level error signals.

▶ V1 neurons in layers 2/3 (the feedforward pathway thought to
convey errors) fire more when novel images are presented, and
these novelty responses decrease as the images are repeatedly
presented [Homan et al 2022].

▶ Higher-level visual areas respond more to images with
coherent shape structure, accompanied by decreases in the
responses of lower-level regions.

Evidence for predictive coding

▶ Predictive coding suggests that predictions should suppress
lower-level error signals.

▶ V1 neurons in layers 2/3 (the feedforward pathway thought to
convey errors) fire more when novel images are presented, and
these novelty responses decrease as the images are repeatedly
presented [Homan et al 2022].

▶ Higher-level visual areas respond more to images with
coherent shape structure, accompanied by decreases in the
responses of lower-level regions.

Study question

What are the complementary strengths and weaknesses of
sampling vs. variational approximations? How might the brain
decide which to deploy in a given context?

Summary

▶ The brain has multiple biologically plausible options for
approximate inference. These are not mutually exclusive.

▶ Different algorithms could be used by different parts of the
brain, based on their complementary strengths and
weaknesses for different tasks. For tasks requiring fast sensory
processing, it may make sense to rely on primarily feedforward
algorithms, whereas for tasks requiring context-sensitivity, it
may make sense to rely on algorithms with recurrent dynamics
and feedback.

▶ Another possibility is that these algorithms are integrated; for
example, there are ways to use sampling methods in the
service of variational inference and predictive coding.

▶ The fact that evidence exists for all of these possibilities
suggests that the complete picture is likely complex, not
reducible to any single simple algorithm.

Summary

▶ The brain has multiple biologically plausible options for
approximate inference. These are not mutually exclusive.

▶ Different algorithms could be used by different parts of the
brain, based on their complementary strengths and
weaknesses for different tasks. For tasks requiring fast sensory
processing, it may make sense to rely on primarily feedforward
algorithms, whereas for tasks requiring context-sensitivity, it
may make sense to rely on algorithms with recurrent dynamics
and feedback.

▶ Another possibility is that these algorithms are integrated; for
example, there are ways to use sampling methods in the
service of variational inference and predictive coding.

▶ The fact that evidence exists for all of these possibilities
suggests that the complete picture is likely complex, not
reducible to any single simple algorithm.

Summary

▶ The brain has multiple biologically plausible options for
approximate inference. These are not mutually exclusive.

▶ Different algorithms could be used by different parts of the
brain, based on their complementary strengths and
weaknesses for different tasks. For tasks requiring fast sensory
processing, it may make sense to rely on primarily feedforward
algorithms, whereas for tasks requiring context-sensitivity, it
may make sense to rely on algorithms with recurrent dynamics
and feedback.

▶ Another possibility is that these algorithms are integrated; for
example, there are ways to use sampling methods in the
service of variational inference and predictive coding.

▶ The fact that evidence exists for all of these possibilities
suggests that the complete picture is likely complex, not
reducible to any single simple algorithm.

Summary

▶ The brain has multiple biologically plausible options for
approximate inference. These are not mutually exclusive.

▶ Different algorithms could be used by different parts of the
brain, based on their complementary strengths and
weaknesses for different tasks. For tasks requiring fast sensory
processing, it may make sense to rely on primarily feedforward
algorithms, whereas for tasks requiring context-sensitivity, it
may make sense to rely on algorithms with recurrent dynamics
and feedback.

▶ Another possibility is that these algorithms are integrated; for
example, there are ways to use sampling methods in the
service of variational inference and predictive coding.

▶ The fact that evidence exists for all of these possibilities
suggests that the complete picture is likely complex, not
reducible to any single simple algorithm.

