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Roadmap

» The sensory data received by the brain provides incomplete
and noisy information about the environment state.

» This lecture describes models of how the brain computes a
probability distribution over (or point estimate of) hidden
states.

» Problem: behavior seems to deviate from Bayes-optimal
inference.

» Can we understand these deviations through the lens of
computational and representational constraints on inference?
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Is human behavior Bayesian?

P Answering this question is trickier than it might seem,
because we need to know what (if any) prior, likelihood,
posterior, and utility function the brain uses.

» One approach is to manufacture experimental tasks that
tightly control all of these factors and impose them on human
subjects.

» This approach has the advantage of allowing us to precisely
answer the question, but it has the disadvantage of being
contrived.



The urn task

Which urn did . come from?

A B
p(A) = 0.4 p(B) = 0.6



Posterior log odds

We can reduce the binary inference problem to a one-dimensional

log odds:

p(AIS) o P(eIA) o p(A)

p(Ble) p(e|B) (B)’
where the first term is the likelihood log odds and the second term
is the prior log odds.

+|ogp
p



Generalized log odds

To quantitatively evaluate the Bayesian hypothesis, we can
generalize this equation to a more flexible model with coefficients
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where y is the response generated by human subjects.



Fitted coefficients
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Take-aways

» Both coefficients are systematically below 1 (under-reaction),
though the prior coefficient () is pretty close to 1.

» Thus, even in this idealized setting, people don’t perfectly
execute Bayes' rule: Although they update in the correct
direction, they systematically under-react to the likelihood
(i.e., the urn composition in this case).
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» Under-reaction suggests that updating from the prior to the
(approximate) posterior is costly.

» Let's replace the true posterior p(s|x) with an approximate
posterior g(s|x) to make explicit that we are no longer
assuming exact Bayesian inference.

» Assume the action a output deterministically by policy 7 is
the approximate posterior: a = q.



Resource-rational analysis of costly inference

Cost of updating after observing signal x using the
Kullback-Leibler (KL) divergence:

N e 1o 961)
Dla(sllp(s)] = X atsl)log e 5

Belief updates that move the approximate posterior g(s|x) farther
from the prior p(s) are more costly.



Resource-rational analysis of costly inference

Expected cost ¢(7) under policy m, which averages over signals:

c(m) =Y p(x)Pl(s|x)llp(s)]

X



Resource-rational analysis of costly inference

Utility should be higher when our beliefs are closer to the posterior.
Suppose rewards are signals (r = x) and that the utility derived
from these signals is the negative KL divergence between the
approximate and true posterior:

u(r) = =Dla(s|x)llp(s|x)]
Expected utility:

i(m) = Elu(r)|x] = =Y p(x)Dla(slx)llp(s|x)]

X



Resource-rational analysis of costly inference

Optimal policy:

" = argmax ()
m:c(m)<C

where C is the capacity limit.



Resource-rational analysis of costly inference

Equivalent unbounded optimization problem (Lagrangian):

7w = argmax d(m) — Ac(m)

where the Lagrange multiplier is:

()

A= D)

with ¢(7*) = C (i.e., the optimal policy operates at the capacity
limit).



Resource-rational analysis of costly inference

Closed-form optimal policy [Zhu & Griffiths 2023]:

1/(1+X)

q*(slx) o p(x[s) p(s)

This is just Bayes' rule with a down-weighted likelihood. This
implies under-reaction to the likelihood, as seen experimentally.
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» We now construct a neural model that approximates the
posterior over s € {A, B}.

» Our basic primitive is the integrate-and-fire neuron (no leak)
with membrane potential dynamics governed by:

Ch=I(t)

where C is the membrane capacitance, and
I(t) =>4 wazq4(t) is the input current, which linearly
integrates presynaptic spikes.
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Neural implementation

» Consider a population of presynaptic neurons, where neuron d
has tuning function fy(s). The log-likelihood under Poisson
spiking is given by:

log p(x|s) Zxd log fg(s) — fq(s) — log x4!

where x4 is the spike count for neuron d over some time
window.

» The third term doesn’t depend on s, so we can ignore it. We
will also ignore the second term under the assumption that
>4 fd(s) is a constant.

> After discarding these terms, the log-likelihood ratio becomes:

p(xls = A) _ fu(A)
log p(x|]s=B) ~ Zxd log fZ(B)



Neural implementation

If we set the synaptic strength of neuron d to be wy = log gég%,

the postsynaptic neuron will accumulate weighted spike counts
over time such that its membrane potential represents the
posterior log-odds:

p(s = Alx)
I(t) = XdWq, Wy = log ———F—=,
(0 =2 pls = BIx)
provided the resting potential is given by the prior log odds:

u(0) = log H



Example: motion direction discrimination

Task is to determine the direction of coherently moving dots.
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Example: motion direction discrimination

>

>

Relevant presynaptic population is in extrastriate area MT,
where most neurons are tuned to particular motion directions.

Tuning functions can be modeled as a cosine function defined
over the space of motion directions (s € [0, 360]):

f4(s) = exp[cos(s — s;)/v]
where s is the preferred direction for neuron d and v is the

tuning width.

One synapse downstream, neurons in parietal area LIP
integrate the spiking of MT neurons, enabling them to
compute the posterior log odds.



Example: motion direction discrimination

LIP neurons ramp up over time during viewing of the random dot
motion stimulus.
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[Shadlen & Gold 2001]
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Another example: discrete evidence accumulation

» Drawback of the random dot motion stimulus: difficult to
precisely quantify the information value of the stimulus at any
given time.

» Yang & Shadlen [2007] addressed this issue, recording LIP
neurons while monkeys viewed a sequence of abstract shapes.

» At the end of the sequence, the monkey needed to choose one
of two visual targets.

» The correct target was determined by the shape sequence:
each shape was associated with a particular log-likelihood
ratio, such that the total log-likelihood ratio could be
obtained by summing up the contributions of the shapes in
the sequence.



Another example: discrete evidence accumulation

Changes in the firing rate of LIP neurons are linearly related to the
log-likelihood ratio.

Change in firing rate

-2 0 2
Log-likelihood ratio

[Yang & Shadlen 2007]
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Incorporating costly inference

» Cost parameter A enters through a multiplier of the
log-likelihood ratio.

» This can be interpreted as a global modulation:

p(x|s = AN 1 f4(A)
o8 s = BT — 14 zd:Xd ¢ 7 (B)

» As \ increases (lower capacity C), the log-likelihood is
suppressed.

P> Possible mechanistic interpretations: suppression of firing,
suppression of synaptic strengths, or suppression of the
postsynaptic membrane potential.



Case study: effects of food restriction on orientation
discrimination
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[Padamsey et al 2022]
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Case study: effects of food restriction on orientation
discrimination

» The mechanism underlying the tuning change was a reduction
in AMPA receptor conductance, which was compensated for
by increased input resistance and depolarization of the
membrane potential.

» This had the effect of maintaining roughly the same firing
rates but making firing more variable.

» The broader orientation tuning essentially reflects this higher
variability (i.e., a higher probability of randomly responding to
stimuli farther away from a neuron'’s preferred stimulus).



Case study: effects of food restriction on orientation
discrimination

Simulation of the costly inference model:
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Study question

How would you modify the random dot motion discrimination task
to directly test predictions of the resource-rational inference model?
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Gaussian magnitude estimation

(VAN

s S8 S

Gray curve: prior, p(s|5). Black curve: signal distribution, p(x|s).
Blue line: posterior mean §.



Gaussian magnitude estimation

Signal-generating process:
x~N(s,02), s~ N(502).

The posterior mean (also the posterior mode) is a convex
combination of the signal x and the prior mean :

§=wx+(1—-w)5,

2
o . . e
72107 1S the signal sensitivity.

where w =



Central tendency effect

The bias for Gaussian magnitude estimation is given by:
E[$ —s|s] = (1 — w)(5—s).

The prior mean attracts the posterior mean (bias always pushes §
towards §), and the strength of this attraction is inversely
proportional to the signal sensitivity w. Many studies show such a
central tendency effect.
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Moderators of central tendency

» Central tendency should be stronger when the signal variance
is large relative to the prior variance.

» Signal variance tends to increase with magnitude, possibly due
to a nonlinear transformation from objective to subjective
magnitude (more on this later).

» Consistent with this prediction, central tendency is stronger
for larger magnitudes, and shorter stimulus durations [Xiang
et al 2021].
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Repulsion

» Sometimes human judgments are repulsed from the prior
mean—an apparently “anti-Bayesian” bias.

» For example, people judge a smaller object to be heavier than
a larger object with the same mass, the size-weight illusion.

» This seems to defy the prior that larger objects tend to be
more massive.
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Formalizing attraction /repulsion

> Bias is attractive when pointing towards the prior mode,
repulsive when pointing away from the prior mode.

> Let p/(s) denote the derivative of the prior p(s). Then
repulsion when E[§ — s|s]p’(s) < 0.
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Formalizing attraction /repulsion

» The direction bias can be approximated [Hahn & Wei 2024]:

1 [PsR J()P(s)
E[s — s|s]p/(s) =~
8P =50 ey )
where J(s) is the Fisher information (measure of coding
precision).
» Repulsion will occur when J'(s) and p/(s) have the same sign
and their product is large enough to outweigh the first term.

» Consistent with Bayes' rule!
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Diminishing sensitivity

> Many psychophysical studies show diminishing sensitivity for
larger magnitudes. Neurally this corresponds to decreasing
coding precision, J'(s) < 0.

» This implies that repulsion should tend to occur when
p'(s) <O.

» Many natural magnitudes have this property. For example, the
distribution of spatial frequencies in natural images falls off
according to a power law: p(s) o< s~% with o between 1 and
2.



Neural correlate of diminishing sensitivity

Spatial frequency tuning in V1 can be modeled using Gaussian
tuning functions defined over log-transformed frequency.
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[Movshon, unpublished]
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Neural correlate of diminishing sensitivity

> If we assume Poisson spiking and a uniform density of
preferred stimuli in log space, we get (in the limit of a large
population):

1
J(S) X 57

» Thus, diminishing sensitivity, J'(s) < 0, can be derived from
an approximation of the empirical tuning functions.

» This satisfies the assumptions underlying our analysis of
repulsion.
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Summary

» We started with the normative ideal of Bayesian inference,
and then tried to explain both the successes and failures of
this ideal as a model of inference in the brain.

» The key idea is that computational and representational
constraints shape inference in ways that comport with
empirical observations.

> We also saw how these constraints can be realized in simple
neural networks.



Study question

In what ways might resource-rational inference vary systematically
across individuals (e.g., children, older adults, clinical
populations)? How would you test this empirically?



