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How does the brain work?

▶ Asking how something works is fundamentally a question
about how it serves a function.

▶ The heart pumps, the stomach digests, the brain thinks.

▶ The real question: How does the brain produce thought?

▶ Thought is computation—the manipulation of
representations for some purpose.
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Representations

▶ A collection of neurons represents something (e.g., an apple)
in the sense that a downstream neuron can interpret their
activity pattern in terms of information about the apple.

▶ The downstream neuron can then do something with this
information by participating in a computation (e.g., planning
a reaching movement, comparing the apple to other apples in
memory, deciding whether to eat it, etc.).

▶ Mental computations are purposeful manipulations of
representations.
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Marr’s levels

We will try to understand what constitutes “purposeful
manipulations of representations” at multiple levels of analysis.

1. Computational level: What is the problem being solved by
the system?

2. Representational/algorithmic level: How is the problem
solved algorithmically?

3. Implementation level: How is the algorithm realized
physically?
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Why are the levels useful?

Marr: “Trying to understand perception by studying only neurons
is like trying to understand bird flight by studying only feathers: It
just cannot be done.”

[Krakauer et al. 2017]
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1. Conceptual: nothing recognizable as “cognition” if one only
looks at neurons.

2. Methodological: Thinking like an engineer is often a good
starting place for building models.
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How far can we go with a hardcore bottom-up approach?

Lesioning a microprocessor to identify the functions of individual
transistors: an exercise in futility?

[Jonas & Kording 2017]



The reverse engineering approach

1. Posit the computational problems that the brain is trying to
solve.

2. Engineer algorithmic solutions to these problems.

3. Model how the brain could implement the algorithmic
solutions under biological constraints.
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Study question

What are the advantages and disadvantages of the reverse
engineering approach?



The computational level: statistical decision problems

▶ At first glance, the brain seems to be solving many different
kinds of problems (perception, decision making, motor
control, learning, memory, language understanding, etc.).

▶ On further inspection, these all appear to be variations on one
kind of problem: a statistical decision problem.

▶ This is general enough to encompass many (all?) specific
functions carried out by the brain.
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Decision theory

Action:

Perception:

Reward:

<latexit sha1_base64="0jmneK74YAS9GxkSRS2nk9xSvBk="></latexit>

p(x|s)
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⇡(a|x)
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p(r|s, a)
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p(s|x)Belief:



Example
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Utility

▶ The agent gets utility u(r) from reward r .

▶ For example, r might be money you earn from the task I give
you, and u(r) is how much you value the money, which
depends on factors like your current wealth level and the
purchasing power of the money.

▶ This emphasizes the fact that utility is distinct from nominal
quantities like dollars, number of calories, etc. Utility is
internally generated.
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Bayesian decision theory

▶ Key idea: maximize expected utility ū(π) = E[u(r)|π] given
beliefs p(s|x) about the hidden state of the world:

π∗ = argmax
π

ū(π).

▶ Expected utility is how much utility an agent believes it will
gain under policy π, averaging over these sources of
randomness:

ū(π) =
∑
x

p(x)
∑
a

π(a|x)
∑
s

p(s|x)
∑
r

p(r |s, a)u(r).
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Bayesian inference

▶ The posterior p(s|x) is the agent’s probabilistic belief about
the hidden state s given the signal x .

▶ Update from prior p(s) to posterior according to Bayes’ rule:

p(s|x) = p(x |s)p(s)
p(x)

.

▶ The likelihood, p(x |s), expresses how well a hypothetical state
“fits” the data.
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▶ The posterior p(s|x) is the agent’s probabilistic belief about
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“fits” the data.



Study question

If priors are subjective, are Bayesian theories unfalsifiable?



Why be Bayesian?

The logician’s argument

▶ In Boolean logic, the truth value of a proposition is
represented by 0 (false) or 1 (true)

▶ The truth value of a complex propositions can be calculated
using Boolean algebra.
▶ Conjunction: AB
▶ Disjunction A+ B − AB
▶ Negation: 1− A

▶ Truth values are known with certainty (Boolean operations
always yield values of 0 or 1). What if you’re unsure? Is there
a “soft” version that correctly represents and propagates a
measure of “plausibility”?
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Why be Bayesian?

The logician’s argument

▶ We’d like “plausibility” to be a real number (so that it can
encode continuous degrees of plausibility) and internally
consistent (logically equivalent propositions should have the
same plausibility).

▶ We’d also like it to recover Boolean logic as a special case
when plausibility is maximal or minimal (corresponding to
complete certainty).

▶ Cox’s Theorem: only probabilities updated according to
Bayes’ rule satisfy these requirements.

▶ Thus, Bayesian probability theory can be viewed as a natural
extension of Boolean logic.
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Why be Bayesian?

The decision theorist’s argument

▶ Admissible policy: at least as good as any other policy across
all states.

▶ Complete Class Theorem: every admissible policy corresponds
to a Bayesian policy for some prior.

▶ Thus, Bayesian decision theory is in a sense inevitable for a
decision maker who wants to avoid being dominated.
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Why be Bayesian?

The gambler’s argument

▶ Dutch Book Theorem: a bookie can’t make money off of a
Bayesian agent in expectation.

▶ If instead the agent makes bets using plausibilities that violate
the axioms of probability, then it’s possible to construct a bet
that they will accept and yet they will be guaranteed to lose
money.

▶ Thus, there is a financial incentive to be Bayesian.
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The algorithmic level

▶ Real agents have constraints on computation, memory, and
data.

▶ These constraints delimit what kinds of algorithms are
realizable.
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Complexity, efficiency, tractability

We can characterize the requirements of an algorithm along several
dimensions:

1. Time complexity: how much computation is required?

2. Space complexity: how much memory is required?

3. Sample complexity: how much data are required?

If complexity cannot be expressed as a polynomial function of the
input size N, an algorithm is considered inefficient. A problem for
which no efficient algorithm exists is intractable.



Illustration

▶ Suppose the state space consists of N variables,
s = (s1, . . . , sN), where each variable can take one of K
discrete values.

▶ Computing the normalizing constant for Bayes’ rule then
requires summing over KN possible configurations.

▶ Example: x corresponds to images and s corresponds to the
set of N objects in a scene, each of which could belong to K
possible categories.

▶ Enumerating all possible states is inefficient because N
appears in the exponent.
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Combinatorial problems

▶ Combinatorial problems, with complexity exponential in N, are
everywhere.

▶ They cannot be efficiently solved by algorithms that rely on
exhaustive enumeration.

▶ Exponential complexity frequently arises in high-dimensional
problems where some computation requires exhaustive
coverage of the space—the curse of dimensionality.
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Tractability and the brain

▶ If a problem is intractable, it is unlikely that our brains evolved
to solve it. This suggests the following research strategy:

▶ Only reverse engineer the brain’s efficient solutions to
tractable problems.

▶ Focus on algorithms with polynomial complexity that have
been shown to work in practice.

▶ Identify behavioral and neural signatures of these algorithms,
investigate how they could be implemented with neural
machinery.
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Resource rationality

▶ Each agent has a capacity limit, C, measured in resource units
(e.g., time, memory, computation, information).

▶ The resource-rational policy optimizes expected utility subject
to the resource capacity limit:

π∗ = argmax
π: c(π)≤C

ū(π).

where c(π) is the amount of resources consumed by
implementing policy π.
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Study question

How is it possible to find optimal resource-constrained policies
when the policy search is itself resource-constrained? And doesn’t
this threaten an infinite regress, where each optimization is nested
within an even more difficult optimization problem?



The implementation level

▶ There are many physical implementations of a given algorithm.

▶ The brain’s elementary computing units are neurons.

▶ Each neuron implements a relatively simple computation;
wiring up many neurons together makes complex computation
possible.
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Resource-rational neurobiology

▶ Spikes are metabolically expensive; cells cannot spike with
arbitrarily high rates for arbitrarily long periods of time.

▶ Maintaining a reliable response to inputs is also metabolically
expensive.

▶ Maintenance of synaptic weights is metabolically expensive.

▶ The brain should economize on the number of neurons, their
average firing rate, the reliability of firing, and the
number/strength of connections between neurons.
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▶ The representations: probabilistic beliefs, utilities, and costs.
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