Lightweight guidelines for code and data sharing
Computational Cognitive Neuroscience Lab, Harvard University

Data format. Most kinds of behavioral data can be arranged into what is sometimes
called tidy data. A single file (e.g., in CSV format) contains the trial-by-trial data for all
subjects. Each row is a single observation (e.g., a trial), and each column is a variable. For
example, the column headers might look like:
a. Subject
Trial
Block
Stimulus
Choice
Outcome
RT
Age

R

i. Gender
Software. If your data are in tidy format and you use R, then you can exploit the
functionality of the tidyverse packages. There are also tools in Python.

Language-independence. Because different people use different programming
languages and packages, data should be stored in a language-independent format, such
as CSV or TXT files. In some cases, it makes more sense to use JSON as a data format,
which is easier to work with for certain types of data (e.g., fields containing lists are
loaded as strings from CSV files, which requires additional processing, but stay as lists
when loaded from JSON files). Another benefit of JSON is that you can easily load a
JSON file into a data frame and have all variables/columns and data types (factor,
numeric, etc.) with no need for writing extra formatting code.
Repositories. Both data and code should be stored in a supported repository, such as
GitHub. In some cases, data sets are too large and then there are a few other options. For
example, if you're dealing with fMRI data, there is OpenNeuro. Repository organization
is important. One fairly general approach is to organize repositories into the following
sub-directories:

a. Data (where the raw data files live)

b. Code (analysis and modeling code)
c. Results (code outputs that you want to save)
d. Figures

e. Docs (notes, manuscript drafts, bibliographies, etc.)
Reproducibility. All analyses and figures in a published paper should be reproducible
with the code. Importantly, you have to check that all the necessary files and
dependencies are in the repo, or otherwise provide instructions for how to obtain them
(e.g., if the user has to install certain libraries). As much as possible, make code
self-contained: don’t rely on certain variables being preloaded in the workspace. Make
sure they’re defined in the functions themselves.


https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://www.tidyverse.org/
https://byuidatascience.github.io/python4ds/tidy-data.html
https://openneuro.org/

6.

10.

a. One way to deal with software dependencies is using a package manager like
Conda. This allows someone to write all of the package dependencies to a file,
which can be downloaded by others when they download the project repository.
Then all someone has to do is conda env create
<list of dependencies name>.yml to install all of the packages, instead
of figuring it out on their own. It has the added benefit of making projects easy to
develop on a cluster; in the event you need to use a cluster you can use the above
method to install the needed packages easily in one line of code on the cluster,
instead of manually installing each one.

b. InR, there is similar package management functionality provided by packrat.
Ease of use. Make reproduction of analyses and figures as easy as possible. In particular,
you should have a function like plot_figures(fig) which takes the figure name as input
and generates the figure that appears in the paper. So for example plot_figures(‘figl’)
should generate figure 1. In addition, this function should produce all the statistical
analyses associated with the figure and display them in an interpretable way. For
example, if the paper reports a t-test, the function should display the results of the t-test
in a standard format, such as t(35) = 2.15, p = 0.003. Finally, make sure that the repo is
well-documented: explain what’s in it, what each function does, how to get started
(sometimes tutorial code is useful).

Front-end vs. back-end functions. Front-end functions such as plot_figures should not
take as input lots of variables, which the user may not know how to specify. There can be
back-end functions that implement the underlying computations. These should be as
modular as possible, to facilitate reuse across projects.

Code annotation. As much as possible, annotate your code! You might not understand
what your code is doing 6 months from now. In addition, each function should have a
commented header explaining how to use it (what the inputs and outputs are, what the
function does, etc.).

Variable naming. Make your variable names informative so that it’s easier to keep track
of what they mean.

Beware of notebooks. Some of you like to code in notebooks like Jupyter. This is very
useful for code prototyping, but it can be a disaster for reproducibility if you're not
careful. See here for more guidance.

Further resources:

The good research code handbook



https://docs.conda.io/en/latest/
https://rstudio.github.io/packrat/
https://arxiv.org/pdf/1810.08055.pdf
https://goodresearch.dev/index.html

